Unknown

Dataset Information

0

Conserved interactions required for inhibition of the main protease of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).


ABSTRACT: The COVID-19 pandemic caused by the SARS-CoV-2 requires a fast development of antiviral drugs. SARS-CoV-2 viral main protease (Mpro, also called 3C-like protease, 3CLpro) is a potential target for drug design. Crystal and co-crystal structures of the SARS-CoV-2 Mpro have been solved, enabling the rational design of inhibitory compounds. In this study we analyzed the available SARS-CoV-2 and the highly similar SARS-CoV-1 crystal structures. We identified within the active site of the Mpro, in addition to the inhibitory ligands' interaction with the catalytic C145, two key H-bond interactions with the conserved H163 and E166 residues. Both H-bond interactions are present in almost all co-crystals and are likely to occur also during the viral polypeptide cleavage process as suggested from docking of the Mpro cleavage recognition sequence. We screened in silico a library of 6900 FDA-approved drugs (ChEMBL) and filtered using these key interactions and selected 29 non-covalent compounds predicted to bind to the protease. Additional screen, using DOCKovalent was carried out on DrugBank library (11,414 experimental and approved drugs) and resulted in 6 covalent compounds. The selected compounds from both screens were tested in vitro by a protease activity inhibition assay. Two compounds showed activity at the 50 µM concentration range. Our analysis and findings can facilitate and focus the development of highly potent inhibitors against SARS-CoV-2 infection.

SUBMITTER: Shitrit A 

PROVIDER: S-EPMC7704658 | biostudies-literature | 2020 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Conserved interactions required for inhibition of the main protease of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

Shitrit Alina A   Zaidman Daniel D   Kalid Ori O   Bloch Itai I   Doron Dvir D   Yarnizky Tali T   Buch Idit I   Segev Idan I   Ben-Zeev Efrat E   Segev Elad E   Kobiler Oren O  

Scientific reports 20201130 1


The COVID-19 pandemic caused by the SARS-CoV-2 requires a fast development of antiviral drugs. SARS-CoV-2 viral main protease (Mpro, also called 3C-like protease, 3CLpro) is a potential target for drug design. Crystal and co-crystal structures of the SARS-CoV-2 Mpro have been solved, enabling the rational design of inhibitory compounds. In this study we analyzed the available SARS-CoV-2 and the highly similar SARS-CoV-1 crystal structures. We identified within the active site of the Mpro, in add  ...[more]

Similar Datasets

| S-EPMC7159133 | biostudies-literature
| S-EPMC8661936 | biostudies-literature
| S-EPMC1783898 | biostudies-literature
| S-EPMC7441750 | biostudies-literature
| S-EPMC8466562 | biostudies-literature
| S-EPMC9347825 | biostudies-literature
| S-EPMC10205138 | biostudies-literature
| S-EPMC10734757 | biostudies-literature
| S-EPMC7668746 | biostudies-literature
| S-EPMC9797022 | biostudies-literature