Unknown

Dataset Information

0

BRDT promotes ovarian cancer cell growth.


ABSTRACT: Bromodomain testis-specific factor (BRDT) is a member of the bromodomain and extra-terminal (BET) family proteins. Its expression and potential functions in ovarian cancer were examined. We show that BRDT is overexpressed in human ovarian cancer tissues and in established (CaOV3)/primary ovarian cancer cells. However, its expression is low in ovarian epithelial tissues and cells. Significantly, shRNA-induced silencing or CRISPR/Cas9-mediated knockout of BRDT inhibited ovarian cancer cell growth, viability, proliferation and migration, and induced significant apoptosis activation. Conversely, exogenous overexpression of BRDT, by a lentiviral construct, augmented CaOV3 cell proliferation and migration. In CaOV3 cells expression of two key BRDT target genes, polo-like kinase 1 (PLK1) and aurora kinase C (AURKC), was downregulated by BRDT shRNA or knockout, but upregulated with BRDT overexpression. In vivo, xenograft tumors-derived from BRDT-knockout CaOV3 cells grew significantly slower than control tumors in severe combined immunodeficient (SCID) mice. Furthermore, intratumoral injection of BRDT shRNA lentivirus potently inhibited the growth of primary ovarian cancer xenografts in SCID mice. Downregulation of PLK1 and AURKC was detected in BRDT-knockout and BRDT-silenced tumor tissues. Collectively, BRDT overexpression promotes ovarian cancer cell progression. Targeting BRDT could be a novel strategy to treat ovarian cancer.

SUBMITTER: Chen L 

PROVIDER: S-EPMC7705741 | biostudies-literature | 2020 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

BRDT promotes ovarian cancer cell growth.

Chen Ling L   Cai Shang S   Wang Jing-Mei JM   Huai Ying-Ying YY   Lu Pei-Hua PH   Chu Qian Q  

Cell death & disease 20201130 11


Bromodomain testis-specific factor (BRDT) is a member of the bromodomain and extra-terminal (BET) family proteins. Its expression and potential functions in ovarian cancer were examined. We show that BRDT is overexpressed in human ovarian cancer tissues and in established (CaOV3)/primary ovarian cancer cells. However, its expression is low in ovarian epithelial tissues and cells. Significantly, shRNA-induced silencing or CRISPR/Cas9-mediated knockout of BRDT inhibited ovarian cancer cell growth,  ...[more]

Similar Datasets

| S-EPMC5706863 | biostudies-literature
| S-EPMC6256973 | biostudies-literature
| S-EPMC5588071 | biostudies-literature
| S-EPMC3461910 | biostudies-literature
| S-EPMC2930833 | biostudies-literature
| S-EPMC4742182 | biostudies-literature
| S-EPMC5216990 | biostudies-literature
| S-EPMC8298468 | biostudies-literature
| S-EPMC7947696 | biostudies-literature
| S-EPMC8093979 | biostudies-literature