Unknown

Dataset Information

0

Development of a Platform for Near-Infrared Photoredox Catalysis.


ABSTRACT: Over the past decade, chemists have embraced visible-light photoredox catalysis due to its remarkable ability to activate small molecules. Broadly, these methods employ metal complexes or organic dyes to convert visible light into chemical energy. Unfortunately, the excitation of widely utilized Ru and Ir chromophores is energetically wasteful as ?25% of light energy is lost thermally before being quenched productively. Hence, photoredox methodologies require high-energy, intense light to accommodate said catalytic inefficiency. Herein, we report photocatalysts which cleanly convert near-infrared (NIR) and deep red (DR) light into chemical energy with minimal energetic waste. We leverage the strong spin-orbit coupling (SOC) of Os(II) photosensitizers to directly access the excited triplet state (T1) with NIR or DR irradiation from the ground state singlet (S0). Through strategic catalyst design, we access a wide range of photoredox, photopolymerization, and metallaphotoredox reactions which usually require 15-50% higher excitation energy. Finally, we demonstrate superior light penetration and scalability of NIR photoredox catalysis through a mole-scale arene trifluoromethylation in a batch reactor.

SUBMITTER: Ravetz BD 

PROVIDER: S-EPMC7706074 | biostudies-literature | 2020 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications


Over the past decade, chemists have embraced visible-light photoredox catalysis due to its remarkable ability to activate small molecules. Broadly, these methods employ metal complexes or organic dyes to convert visible light into chemical energy. Unfortunately, the excitation of widely utilized Ru and Ir chromophores is energetically wasteful as ∼25% of light energy is lost thermally before being quenched productively. Hence, photoredox methodologies require high-energy, intense light to accomm  ...[more]

Similar Datasets

| S-EPMC8153078 | biostudies-literature
| S-EPMC6338432 | biostudies-literature
| S-EPMC11344023 | biostudies-literature
| S-EPMC4440623 | biostudies-other
| S-EPMC6340401 | biostudies-literature
| S-EPMC9021569 | biostudies-literature
| S-EPMC7770715 | biostudies-literature
| S-EPMC9292873 | biostudies-literature
| S-EPMC5225041 | biostudies-literature
| S-EPMC4854196 | biostudies-literature