Project description:Prognosis for cardiogenic shock patients under ECMO was our study goal. Success defined as survived more than 7 days after ECMO installation and failure died or had multiple organ failure in 7 days. Total 34 cases were enrolled, 17 success and 17 failure. Peripheral blood mononuclear cells collected at ECMO installation 0, 2 hours and removal were analyzed.
Project description:Prognosis for cardiogenic shock patients under ECMO was our study goal. Success defined as survived more than 7 days after ECMO installation and failure died or had multiple organ failure in 7 days. Total 34 cases were enrolled, 17 success and 17 failure. Peripheral blood mononuclear cells collected at ECMO installation 0hr, 2hr and removal were used analyzed.
Project description:Prognosis for cardiogenic shock patients under ECMO was our study goal. Success defined as survived more than 7 days after ECMO installation and failure died or had multiple organ failure in 7 days. Total 34 cases were enrolled, 17 success and 17 failure. Peripheral blood mononuclear cells collected at ECMO installation were used analyzed.
Project description:ObjectiveTo describe the prevalence and context of decisions to withdraw extracorporeal membrane oxygenation (ECMO), with an ethical analysis of issues raised by this technology.Patients and methodsWe retrospectively reviewed medical records of adults treated with ECMO at Mayo Clinic in Rochester, Minnesota, from January 1, 2010, through December 31, 2014, from whom ECMO was withdrawn and who died within 24 hours of ECMO separation.ResultsOf 235 ECMO-supported patients, we identified 62 (26%) for whom withdrawal of ECMO was requested. Of these 62 patients, the indication for ECMO initiation was bridge to transplant for 8 patients (13%), bridge to mechanical circulatory support for 3 (5%), and bridge to decision for 51 (82%). All the patients were supported with other life-sustaining treatments. No patient had decisional capacity; for all the patients, consensus to withdraw ECMO was jointly reached by clinicians and surrogates. Eighteen patients (29%) had a do-not-resuscitate order at the time of death.ConclusionFor most patients who underwent treatment withdrawal eventually, ECMO had been initiated as a bridge to decision rather than having an established liberation strategy, such as transplant or mechanical circulatory support. It is argued that ethically, withdrawal of treatment is sometimes better after the prognosis becomes clear, rather than withholding treatment under conditions of uncertainty. This rationale provides the best explanation for the behavior observed among clinicians and surrogates of ECMO-supported patients. The role of do-not-resuscitate orders requires clarification for patients receiving continuous resuscitative therapy.
Project description:Extracorporeal membrane oxygenation (ECMO) is an advanced form of life support technology whereby venous blood is oxygenated outside of the body and returned to the patient. ECMO was initially used as last-resort rescue therapy for patients with severe respiratory failure. Over the last four decades, it has developed into a safe, standard therapy for newborns with progressive cardiorespiratory failure, as a resuscitation therapy after cardiac arrest, and in combination with other treatments such as hypothermia and various blood filtration therapies. ECMO has also become routine for children and adults with all forms of cardiogenic shock and is also routine in early graft failure after transplantation. The one area of ongoing debate is the role of ECMO in adults with hypoxemic respiratory failure. As ECMO equipment becomes safer, earlier use improves patient outcomes. Several modifications of the two basic venovenous and venoarterial ECMO systems are now occurring, as are many minor variations in cannulation strategies and systems of care for patients receiving ECMO. The indications and situations in which ECMO have been tried continue to change, and ECMO for sub-acute and chronic illnesses is now commonplace, as is the use of ECMO in patients with clinical problems previously regarded as contraindications, such as sepsis, malignancy, and immunosuppression.
Project description:BackgroundVenovenous extracorporeal membrane oxygenation (vv-ECMO) is an effective treatment for severe respiratory failure. The interaction between the cardiorespiratory system and the oxygenator can be explored with mathematical models. Understanding the physiology will help the clinician optimise therapy. As others have examined O2 exchange, the main focus of this study was on CO2 exchange.MethodsA model of the cardiorespiratory system during vv-ECMO was developed, incorporating O2, CO2 and N2 exchange in both the lung and the oxygenator. We modelled lungs with shunt fractions varying from 0 to 1, covering the plausible range from normal lung to severe acute respiratory distress syndrome. The effects on PaCO2 of varying the input parameters for the cardiorespiratory system and for the oxygenator were examined.ResultsPaCO2 increased as the shunt fraction in the lung and metabolic CO2 production rose. Changes in haemoglobin and FIO2 had minimal effect on PaCO2. The effect of cardiac output on PaCO2 was variable, depending on the shunt fraction in the lung. PaCO2 decreased as extracorporeal circuit blood flow was increased, but the changes were relatively small in the range used clinically for vv-ECMO of >?2 l/min. PaCO2 decreased as gas flow to the oxygenator rose and increased with recirculation. The oxygen fraction of gas flow to the oxygenator had minimal effect on PaCO2.ConclusionsThis mathematical model of gas exchange during vv-ECMO found that the main determinants of PaCO2 during vv-ECMO were pulmonary shunt fraction, metabolic CO2 production, gas flow to the oxygenator and extracorporeal circuit recirculation.