Unknown

Dataset Information

0

Tumor Habitat-derived Radiomic Features at Pretreatment MRI That Are Prognostic for Progression-free Survival in Glioblastoma Are Associated with Key Morphologic Attributes at Histopathologic Examination: A Feasibility Study.


ABSTRACT:

Purpose

To identify radiomic features extracted from the tumor habitat on routine MR images that are prognostic for progression-free survival (PFS) and to assess their morphologic basis with corresponding histopathologic attributes in glioblastoma (GBM).

Materials and methods

In this retrospective study, 156 pretreatment GBM MR images (gadolinium-enhanced T1-weighted, T2-weighted, and fluid-attenuated inversion recovery [FLAIR] images) were curated. Of these 156 images, 122 were used for training (90 from The Cancer Imaging Archive and 32 from the Cleveland Clinic, acquired between December 1, 2011, and May 1, 2018) and 34 were used for validation. The validation set was obtained from the Ivy Glioblastoma Atlas Project database, for which the percentage extent of 11 histologic attributes was available on corresponding histopathologic specimens of the resected tumor. Following expert annotations of the tumor habitat (necrotic core, enhancing tumor, and FLAIR-hyperintense subcompartments), 1008 radiomic descriptors (eg, Haralick texture features, Laws energy features, co-occurrence of local anisotropic gradient orientations [CoLIAGe]) were extracted from the three MRI sequences. The top radiomic features were obtained from each subcompartment in the training set on the basis of their ability to risk-stratify patients according to PFS. These features were then concatenated to create a radiomics risk score (RRS). The RRS was independently validated on a holdout set. In addition, correlations (P < .05) of RRS features were computed, with the percentage extent of the 11 histopathologic attributes, using Spearman correlation analysis.

Results

RRS yielded a concordance index of 0.80 on the validation set and constituted radiomic features, including Laws (capture edges, waves, ripple patterns) and CoLIAGe (capture disease heterogeneity) from enhancing tumor and FLAIR hyperintensity. These radiomic features were correlated with histopathologic attributes associated with disease aggressiveness in GBM, particularly tumor infiltration (P = .0044) and hyperplastic blood vessels (P = .0005).

Conclusion

Preliminary findings demonstrated significant associations of prognostic radiomic features with disease-specific histologic attributes, with implications for risk-stratifying patients with GBM for personalized treatment decisions. Supplemental material is available for this article. © RSNA, 2020.

SUBMITTER: Verma R 

PROVIDER: S-EPMC7706886 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC10652318 | biostudies-literature
| S-EPMC6222024 | biostudies-literature
| S-EPMC6692188 | biostudies-literature
| S-EPMC8519645 | biostudies-literature
| S-EPMC7603270 | biostudies-literature
| S-EPMC5193017 | biostudies-literature
| S-EPMC4017075 | biostudies-literature
| S-EPMC9575418 | biostudies-literature
| S-EPMC7263288 | biostudies-literature
| S-EPMC5865162 | biostudies-literature