Tumor genotype, location, and malignant potential shape the immunogenicity of primary untreated gastrointestinal stromal tumors.
Ontology highlight
ABSTRACT: Intratumoral immune infiltrate was recently reported in gastrointestinal stromal tumors (GISTs). However, the tumor-intrinsic factors that dictate GIST immunogenicity are still largely undefined. To shed light on this issue, a large cohort (82 samples) of primary untreated GISTs, representative of major clinicopathological variables, was investigated by an integrated immunohistochemical, transcriptomic, and computational approach. Our results indicate that tumor genotype, location, and malignant potential concur to shape the immunogenicity of primary naive GISTs. Immune infiltration was greater in overt GISTs compared with that in lesions with limited malignant potential (miniGISTs), in KIT/PDGFRA-mutated tumors compared with that in KIT/PDGFRA WT tumors, and in PDGFRA-mutated compared with KIT-mutated GISTs. Within the KIT-mutated subset, a higher degree of immune colonization was detected in the intestine. Immune hot tumors showed expression patterns compatible with a potentially proficient but curbed antigen-specific immunity, hinting at sensitivity to immunomodulatory treatments. Poorly infiltrated GISTs, primarily KIT/PDGFRA WT intestinal tumors, showed activation of Hedgehog and WNT/?-catenin immune excluding pathways. This finding discloses a potential therapeutic vulnerability, as the targeting of these pathways might prove effective by both inhibiting pro-oncogenic signals and fostering antitumor immune responses. Finally, an intriguing anticorrelation between immune infiltration and ANO1/DOG1 expression was observed, suggesting an immunomodulatory activity for anoctamin-1.
SUBMITTER: Gasparotto D
PROVIDER: S-EPMC7710278 | biostudies-literature | 2020 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA