Unknown

Dataset Information

0

Biosynthesis of Silver Nanoparticles Using Onion Endophytic Bacterium and Its Antifungal Activity against Rice Pathogen Magnaporthe oryzae.


ABSTRACT: Biosynthesis of silver nanoparticles (AgNPs) using endophytic bacteria is a safe alternative to the traditional chemical method. The purpose of this research is to biosynthesize AgNPs using endophytic bacterium Bacillus endophyticus strain H3 isolated from onion. The biosynthesized AgNPs with sizes from 4.17 to 26.9 nm were confirmed and characterized by various physicochemical techniques such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), UV-visible spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) in addition to an energy dispersive spectrum (EDS) profile. The biosynthesized AgNPs at a concentration of 40 ?g/mL had a strong antifungal activity against rice blast pathogen Magnaporthe oryzae with an inhibition rate of 88% in mycelial diameter. Moreover, the biosynthesized AgNPs significantly inhibited spore germination and appressorium formation of M. oryzae. Additionally, microscopic observation showed that mycelia morphology was swollen and abnormal when dealing with AgNPs. Overall, the current study revealed that AgNPs could protect rice plants against fungal infections.

SUBMITTER: Ibrahim E 

PROVIDER: S-EPMC7712207 | biostudies-literature | 2020 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Biosynthesis of Silver Nanoparticles Using Onion Endophytic Bacterium and Its Antifungal Activity against Rice Pathogen <i>Magnaporthe oryzae</i>.

Ibrahim Ezzeldin E   Luo Jinyan J   Ahmed Temoor T   Wu Wenge W   Yan Chenqi C   Li Bin B  

Journal of fungi (Basel, Switzerland) 20201118 4


Biosynthesis of silver nanoparticles (AgNPs) using endophytic bacteria is a safe alternative to the traditional chemical method. The purpose of this research is to biosynthesize AgNPs using endophytic bacterium <i>Bacillus endophyticus</i> strain H3 isolated from onion. The biosynthesized AgNPs with sizes from 4.17 to 26.9 nm were confirmed and characterized by various physicochemical techniques such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), UV-visible spectros  ...[more]

Similar Datasets

| S-EPMC3424150 | biostudies-literature
| S-EPMC5817273 | biostudies-literature
| S-EPMC4391826 | biostudies-literature
| S-EPMC5667575 | biostudies-literature
| S-EPMC5131998 | biostudies-literature
| S-EPMC3738970 | biostudies-literature
| S-EPMC8879529 | biostudies-literature
| S-EPMC10997076 | biostudies-literature
| S-EPMC3338719 | biostudies-literature
| S-EPMC2956555 | biostudies-literature