Unknown

Dataset Information

0

The Fission Yeast RNA-Binding Protein Meu5 Is Involved in Outer Forespore Membrane Breakdown during Spore Formation.


ABSTRACT: In Schizosaccharomyces pombe, the spore wall confers strong resistance against external stress. During meiosis II, the double-layered intracellular forespore membrane (FSM) forms de novo and encapsulates the nucleus. Eventually, the inner FSM layer becomes the plasma membrane of the spore, while the outer layer breaks down. However, the molecular mechanism and biological significance of this membrane breakdown remain unknown. Here, by genetic investigation of an S. pombe mutant (E22) with normal prespore formation but abnormal spores, we showed that Meu5, an RNA-binding protein known to bind to and stabilize more than 80 transcripts, is involved in this process. We confirmed that the E22 mutant does not produce Meu5 protein, while overexpression of meu5+ in E22 restores the sporulation defect. Furthermore, electron microscopy revealed that the outer membrane of the FSM persisted in meu5? spores. Investigation of the target genes of meu5+ showed that a mutant of cyc1+ encoding cytochrome c also showed a severe defect in outer FSM breakdown. Lastly, we determined that outer FSM breakdown occurs coincident with or after formation of the outermost Isp3 layer of the spore wall. Collectively, our data provide novel insights into the molecular mechanism of spore formation.

SUBMITTER: Zhang B 

PROVIDER: S-EPMC7712723 | biostudies-literature | 2020 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

The Fission Yeast RNA-Binding Protein Meu5 Is Involved in Outer Forespore Membrane Breakdown during Spore Formation.

Zhang Bowen B   Teraguchi Erika E   Imada Kazuki K   Tahara Yuhei O YO   Nakamura Shuko S   Miyata Makoto M   Kagiwada Satoshi S   Nakamura Taro T  

Journal of fungi (Basel, Switzerland) 20201113 4


In <i>Schizosaccharomyces pombe</i>, the spore wall confers strong resistance against external stress. During meiosis II, the double-layered intracellular forespore membrane (FSM) forms de novo and encapsulates the nucleus. Eventually, the inner FSM layer becomes the plasma membrane of the spore, while the outer layer breaks down. However, the molecular mechanism and biological significance of this membrane breakdown remain unknown. Here, by genetic investigation of an <i>S. pombe</i> mutant (E2  ...[more]

Similar Datasets

| S-EPMC2488312 | biostudies-literature
| S-EPMC3811565 | biostudies-literature
| S-EPMC3172268 | biostudies-literature
| S-EPMC5973557 | biostudies-literature
| S-EPMC2526688 | biostudies-literature
| S-EPMC2849465 | biostudies-literature
| S-EPMC3002388 | biostudies-literature
| S-EPMC1168500 | biostudies-other
| S-EPMC2543055 | biostudies-literature
| S-EPMC10409813 | biostudies-literature