An updated investigation on the dromedary camel cerebellum (Camelus dromedarius) with special insight into the distribution of calcium-binding proteins.
Ontology highlight
ABSTRACT: Studying the cerebella of different animals is important to expand the knowledge about the cerebellum. Studying the camel cerebellum was neglected even though the recent research in the middle east and Asia. Therefore, the present study was designed to achieve a detailed description of the morphology and the cellular organization of the camel cerebellum. Because of the high importance of the calcium ions as a necessary moderator the current work also aimed to investigate the distribution of calcium binding proteins (CaBP) such as calbindin D-28K (CB), parvalbumin (PV) and calretinin (CR) in different cerebellar cells including the non-traditional neurons. The architecture of camel cerebellum, as different mammals, consists of the medulla and three layered-cortex. According to our observation the cells in the granular layer were not crowded and many spaces were observed. CB expression was the highest by Purkinje cells including their dendritic arborization. In addition to its expression by the inhibitory interneurons (basket, stellate and Golgi neurons), it is also expressed by the excitatory granule cells. PV was expressed by Purkinje cells, including their primary arborization, and by the molecular layer cells. CR immunoreactivity (-ir) was obvious in almost all cell layers with varying degrees, however a weak or any expression by the Purkinje cells. The molecular layer cells and the Golgi and the non traditional large neurons of the granular layer showed the strongest CR-ir. Granule neurons showed moderate immunoreactivity for CB and CR. In conclusion, the results of the current study achieved a complete map for the neurochemical organization of CaBP expression and distribution by different cells in the camel cerebellum.
SUBMITTER: Attaai AH
PROVIDER: S-EPMC7713137 | biostudies-literature | 2020 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA