Project description:BACKGROUND:Allergic sensitisation towards cashew nut often happens without a clear history of eating cashew nut. IgE cross-reactivity between cashew and pistachio nut is well described; however, the ability of cashew nut-specific IgE to cross-react to common tree nut species and other Anacardiaceae, like mango, pink peppercorn, or sumac is largely unknown. OBJECTIVES:Cashew nut allergic individuals may cross-react to foods that are phylogenetically related to cashew. We aimed to determine IgE cross-sensitisation and cross-reactivity profiles in cashew nut-sensitised subjects, towards botanically related proteins of other Anacardiaceae family members and related tree nut species. METHOD:Sera from children with a suspected cashew nut allergy (n = 56) were assessed for IgE sensitisation to common tree nuts, mango, pink peppercorn, and sumac using dot blot technique. Allergen cross-reactivity patterns between Anacardiaceae species were subsequently examined by SDS-PAGE and immunoblot inhibition, and IgE-reactive allergens were identified by LC-MS/MS. RESULTS:From the 56 subjects analysed, 36 were positive on dot blot for cashew nut (63%). Of these, 50% were mono-sensitised to cashew nuts, 19% were co-sensitised to Anacardiaceae species, and 31% were co-sensitised to tree nuts. Subjects co-sensitised to Anacardiaceae species displayed a different allergen recognition pattern than subjects sensitised to common tree nuts. In pink peppercorn, putative albumin- and legumin-type seed storage proteins were found to cross-react with serum of cashew nut-sensitised subjects in vitro. In addition, a putative luminal binding protein was identified, which, among others, may be involved in cross-reactivity between several Anacardiaceae species. CONCLUSIONS:Results demonstrate the in vitro presence of IgE cross-sensitisation in children towards multiple Anacardiaceae species. In this study, putative novel allergens were identified in cashew, pistachio, and pink peppercorn, which may pose factors that underlie the observed cross-sensitivity to these species. The clinical relevance of this widespread cross-sensitisation is unknown.
Project description:Peanut and tree-nut allergies are frequently comorbid for reasons not completely understood. Vicilin-buried peptides (VBPs) are an emerging family of food allergens whose conserved structural fold could mediate peanut/tree-nut co-allergy. Peptide microarrays were used to identify immunoglobulin E (IgE) epitopes from the N-terminus of the vicilin allergens Ara h 1, Ana o 1, Jug r 2, and Pis v 3 using serum from three patient diagnosis groups: monoallergic to either peanuts or cashew/pistachio, or dual allergic. IgE binding peptides were highly prevalent in the VBP domains AH1.1, AO1.1, JR2.1, and PV3.1, but not in AO1.2, JR2.2, JR2.3, and PV3.2 nor the unstructured regions. The IgE profiles did not correlate with diagnosis group. The structure of the VBPs from cashew and pistachio was solved using solution-NMR. Comparisons of structural features suggest that the VBP scaffold from peanuts and tree-nuts can support cross-reactivity. This may help understand comorbidity and cross-reactivity despite a distant evolutionary origin.
Project description:BackgroundAllergies to cashew are increasing in prevalence, with clinical symptoms ranging from oral pruritus to fatal anaphylactic reaction. Yet, cashew-specific T cell epitopes and T cell cross-reactivity amongst cashew and other tree nut allergens in humans remain uncharacterized.ObjectivesIn this study, we characterized cashew-specific T cell responses in cashew-allergic subjects and examined cross-reactivity of these cashew-specific cells towards other tree nut allergens.MethodsCD154 up-regulation assay was used to determine immunodominance hierarchy among cashew major allergens at the T cell level. The phenotype, magnitude and functionality of cashew-specific T cells were determined by utilizing ex vivo staining with MHC class II tetramers. Dual tetramer staining and proliferation experiments were used to determine cross-reactivity to other tree nuts.ResultsCD4(+) T cell responses were directed towards cashew allergens Ana o 1 and Ana o 2. Multiple Ana o 1 and Ana o 2 T cell epitopes were then identified. These epitopes elicited either TH 2 or TH 2/TH 17 responses in allergic subjects, which were either cashew unique epitope or cross-reactive epitopes. For clones that recognized the cross-reactive epitope, T cell clones responded robustly to cashew, hazelnut and/or pistachio but not to walnut.ConclusionsPhylogenetically diverse tree nut allergens can activate cashew-reactive T cells and elicit a TH 2-type response at an epitope-specific level.Clinical relevanceLack of cross-reactivity between walnut and cashew suggests that cashew peptide immunotherapy approach may not be most effective for walnut.
Project description:Mite allergens are considerable factors in the genesis of allergic diseases. The storage mite Tyrophagus putrescentiae (Tp) appears in contaminated foods and household surroundings. The current diagnostic tools for Tp allergy are mostly based on crude extracts and still contain shortcomings. This study aimed to investigate the immunoglobulin E (IgE)- responsiveness profiles of Tp-allergic patients and develop a molecular diagnostic method using recombinant allergens. Allergenic components were characterized as cross-reacting or species-specific allergens, in which the effective combinations of recombinant allergens were developed and analyzed in terms of the prediction accuracy for clinical diagnosis. Seven recombinant allergens were cloned and generated to detect the IgE responsiveness of the Tp allergy. A survey on the prevalence of mite allergy showed there were higher sensitizations with IgE responsiveness to house dust mites (HDM) (78.9-80.9%) than to storage mites Tp (35.6%). Prevalence of sensitization to Tp was higher in elderly subjects. The principal IgE-binding components of Tp were Tyr p 1, Tyr p 2 and Tyr p 3. Prediction accuracy for Tp allergy by IgE-responsiveness combination D (Tyr p 1, Tyr p 2 & Tyr p 3) was with high precision (100%). Avoiding the cross-reactivity of Dermatophagoides pteronyssinus, the prediction accuracy of IgE-responsiveness combination H+ (Tyr p 1, Tyr p 2, Tyr p 3, Tyr p 7, Tyr p 8, Tyr p 10 & Tyr p 20) was suitable for Tp-specific diagnosis. Panels of Tp allergens were generated and developed a diagnostic kit able beneficial to identify IgE-mediated Tp hypersensitivity.
Project description:Albumins from animals are highly cross-reactive allergens for patients suffering from immunoglobulin E (IgE)-mediated allergy. Approximately 20-30% of cat and dog allergic patients show IgE reactivity and mount IgE-mediated allergic reactions to cat and dog albumin. It is astonishing that allergic patients can develop specific IgE responses against animal albumins because these proteins exhibit a more than 70% sequence identity to human serum albumin (HSA) which is the most abundant protein in the blood of the human body. The sequence identity of cat albumin (Fel d 2) and dog albumin (Can f 3) and HSA are 82% and 80%, respectively. Given the high degree of sequence identity between the latter two allergens and HSA one would expect that immunological tolerance would prohibit IgE sensitization to Fel d 2 and Can f 3. Here we discuss two possibilities for how IgE sensitization to Fel d 2 and Can f 3 may develop. One possibility is the failed development of immune tolerance in albumin-allergic patients whereas the other possibility is highly selective immune tolerance to HSA but not to Fel d 2 and Can f 3. If the first assumption is correct it should be possible to detect HSA-specific T cell responses and HSA-containing immune complexes in sensitized patients. In the latter scenario few differences in the sequences of Fel d 2 and Can f 3 as compared to HSA would be responsible for the development of selective T cell and B cell responses towards Fel d 2 as well as Can f 3. However, the immunological mechanisms of albumin sensitization have not yet been investigated in detail although this will be important for the development of allergen-specific prevention and allergen-specific immunotherapy (AIT) strategies for allergy to albumin.
Project description:BackgroundOnly limited evidence is available regarding the cytokine repertoire of effector T cells associated with peanut allergy, and how these responses relate to IgE antibodies to peanut components.ObjectiveTo interrogate T cell effector cytokine populations induced by Ara h 1 and Ara h 2 among peanut allergic (PA) children in the context of IgE and to evaluate their modulation during oral immunotherapy (OIT).MethodsPeanut-reactive effector T cells were analysed in conjunction with specific IgE profiles in PA children using intracellular staining and multiplex assay. Cytokine-expressing T cell subpopulations were visualized using SPICE.ResultsAra h 2 dominated the antibody response to peanut as judged by prevalence and quantity among a cohort of children with IgE to peanut. High IgE (> 15 kU(A)/L) was almost exclusively associated with dual sensitization to Ara h 1 and Ara h 2 and was age independent. Among PA children, IL-4-biased responses to both major allergens were induced, regardless of whether IgE antibodies to Ara h 1 were present. Among subjects receiving OIT in whom high IgE was maintained, Th2 reactivity to peanut components persisted despite clinical desensitization and modulation of allergen-specific immune parameters including augmented specific IgG4 antibodies, Th1 skewing and enhanced IL-10. The complexity of cytokine-positive subpopulations within peanut-reactive IL-4(+) and IFN-γ(+) T cells was similar to that observed in those who received no OIT, but was modified with extended therapy. Nonetheless, high Foxp3 expression was a distinguishing feature of peanut-reactive IL-4(+) T cells irrespective of OIT, and a correlate of their ability to secrete type 2 cytokines.ConclusionAlthough total numbers of peanut-reactive IL-4(+) and IFN-γ(+) T cells are modulated by OIT in highly allergic children, complex T cell populations with pathogenic potential persist in the presence of recognized immune markers of successful immunotherapy.
Project description:BackgroundOral immunotherapy (OIT) is an effective experimental food allergy treatment that is limited by treatment withdrawal and the frequent reversibility of desensitization if interrupted. Newly diagnosed preschool children may have clinical and immunological characteristics more amenable to treatment.ObjectiveWe sought to test the safety, effectiveness, and feasibility of early OIT (E-OIT) in the treatment of peanut allergy.MethodsWe enrolled 40 children aged 9 to 36 months with suspected or known peanut allergy. Qualifying subjects reacted to peanut during an entry food challenge and were block-randomized 1:1 to receive E-OIT at goal maintenance doses of 300 or 3000 mg/d in a double-blinded fashion. The primary end point, sustained unresponsiveness at 4 weeks after stopping early intervention oral immunotherapy (4-SU), was assessed by double-blinded, placebo-controlled food challenge either upon achieving 4 prespecified criteria, or after 3 maintenance years. Peanut-specific immune responses were serially analyzed. Outcomes were compared with 154 matched standard-care controls.ResultsOf 40 consented subjects, 3 (7.5%) did not qualify. Overall, 29 of 37 (78%) in the intent-to-treat analysis achieved 4-SU (300-mg arm, 17 of 20 [85%]; 3000 mg, 12 of 17 [71%], P = .43) over a median of 29 months. Per-protocol, the overall proportion achieving 4-SU was 29 of 32 (91%). Peanut-specific IgE levels significantly declined in E-OIT-treated children, who were 19 times more likely to successfully consume dietary peanut than matched standard-care controls, in whom peanut-specific IgE levels significantly increased (relative risk, 19.42; 95% CI, 8.7-43.7; P < .001). Allergic side effects during E-OIT were common but all were mild to moderate.ConclusionsAt both doses tested, E-OIT had an acceptable safety profile and was highly successful in rapidly suppressing allergic immune responses and achieving safe dietary reintroduction.
Project description:In Westernized countries, over 1% of the population is allergic to peanuts or tree nuts, which carries a risk of severe allergic reactions. Several studies support the efficacy of peanut oral immunotherapy (OIT) for reducing the clinical sensitivity of affected individuals; however, the mechanisms of this effect are still being characterized. One mechanism that may contribute is the suppression of effector cells, such as basophils. Basophil anergy has been characterized in vitro as a pathway-specific hyporesponsiveness; however, this has not been demonstrated to occur in vivo.To evaluate the hypothesis that basophil anergy occurs in vivo due to chronic allergen exposure in the setting of a clinical oral immunotherapy trial.Samples of peripheral blood were obtained from subjects during a placebo-controlled clinical trial of peanut OIT. Basophil reactivity to in vitro stimulation with peanut allergen and controls was assessed by the upregulation of activation markers, CD63 and CD203c, measured by flow cytometry.The upregulation of CD63 following stimulation of the IgE receptor, either specifically with peanut allergen or non-specifically with anti-IgE antibody, was strongly suppressed by active OIT. However, OIT did not significantly suppress this response in basophils stimulated by the distinct fMLP receptor pathway. In the subset of subjects with egg sensitization, active peanut OIT also suppressed CD63 upregulation in response to stimulation with egg allergen. Allergen OIT also suppressed the upregulation of CD203c including in response to stimulation with IL-3 alone.Peanut OIT induces a hyporesponsive state in basophils that is consistent with pathway-specific anergy previously described in vitro. This suggests the hypothesis that effector cell anergy could contribute to clinical desensitization.
Project description:BackgroundThirty percent of children with food allergy are allergic to more than one food. Previous studies on oral immunotherapy (OIT) for food allergy have focused on the administration of a single allergen at the time. This study aimed at evaluating the safety of a modified OIT protocol using multiple foods at one time.MethodsParticipants underwent double-blind placebo-controlled food challenges (DBPCFC) up to a cumulative dose of 182 mg of food protein to peanut followed by other nuts, sesame, dairy or egg. Those meeting inclusion criteria for peanut only were started on single-allergen OIT while those with additional allergies had up to 5 foods included in their OIT mix. Reactions during dose escalations and home dosing were recorded in a symptom diary.ResultsForty participants met inclusion criteria on peanut DBPCFC. Of these, 15 were mono-allergic to peanut and 25 had additional food allergies. Rates of reaction per dose did not differ significantly between the two groups (median of 3.3% and 3.7% in multi and single OIT group, respectively; p = .31). In both groups, most reactions were mild but two severe reactions requiring epinephrine occurred in each group. Dose escalations progressed similarly in both groups although, per protocol design, those on multiple food took longer to reach equivalent doses per food (median +4 mo.; p < .0001).ConclusionsPreliminary data show oral immunotherapy using multiple food allergens simultaneously to be feasible and relatively safe when performed in a hospital setting with trained personnel. Additional, larger, randomized studies are required to continue to test safety and efficacy of multi-OIT.Trial registrationClinicaltrial.gov NCT01490177.
Project description:BackgroundPatients with peanut allergy have highly stable pathologic antibody repertoires to the immunodominant B-cell epitopes of the major peanut allergens Ara h 1 to 3.ObjectiveWe used a peptide microarray technique to analyze the effect of treatment with peanut oral immunotherapy (OIT) on such repertoires.MethodsMeasurements of total peanut-specific IgE (psIgE) and peanut-specific IgG(4) (psIgG(4)) were made with CAP-FEIA. We analyzed sera from 22 patients with OIT and 6 control subjects and measured serum specific IgE and IgG(4) binding to epitopes of Ara h 1 to 3 using a high-throughput peptide microarray technique. Antibody affinity was measured by using a competitive peptide microarray, as previously described.ResultsAt baseline, psIgE and psIgG(4) diversity was similar between patients and control subjects, and there was broad variation in epitope recognition. After a median of 41 months of OIT, polyclonal psIgG(4) levels increased from a median of 0.3 μg/mL (interquartile range [25% to 75%], 0.1-0.43 μg/mL) at baseline to 10.5 μg/mL (interquartile range [25% to 75%], 3.95-45.48 μg/mL; P < .0001) and included de novo specificities. psIgE levels were reduced from a median baseline of 85.45 kU(A)/L (23.05-101.0 kU(A)/L) to 7.75 kU(A)/L (2.58-30.55 kU(A)/L, P < .0001). Affinity was unaffected. Although the psIgE repertoire contracted in most OIT-treated patients, several subjects generated new IgE specificities, even as the total psIgE level decreased. Global epitope-specific shifts from IgE to IgG(4) binding occurred, including at an informative epitope of Ara h 2.ConclusionOIT differentially alters Ara h 1 to 3 binding patterns. These changes are variable between patients, are not observed in control subjects, and include a progressive polyclonal increase in IgG(4) levels, with concurrent reduction in IgE amount and diversity.