Ontology highlight
ABSTRACT: Background
The parasitoid wasp, Trichogramma dendrolimi, can enter diapause at the prepupal stage. Thus, diapause is an efficient preservation method during the mass production of T. dendrolimi. Previous studies on diapause have mainly focused on ecological characteristics, so the molecular basis of diapause in T. dendrolimi is unknown. We compared transcriptomes of diapause and non-diapause T. dendrolimi to identify key genes and pathways involved in diapause development.Results
Transcriptome sequencing was performed on diapause prepupae, pupae after diapause, non-diapause prepupae, and pupae. Analysis yielded a total of 87,022 transcripts with an average length of 1604?bp. By removing redundant sequences and those without significant BLAST hits, a non-redundant dataset was generated, containing 7593 sequences with an average length of 3351?bp. Among them, 5702 genes were differentially expressed. The result of Gene Ontology (GO) enrichment analysis revealed that regulation of transcription, DNA-templated, oxidation-reduction process, and signal transduction were significantly affected. Ten genes were selected for validation using quantitative real-time PCR (qPCR). The changes showed the same trend as between the qPCR and RNA-Seq results. Several genes were identified as involved in diapause, including ribosomal proteins, zinc finger proteins, homeobox proteins, forkhead box proteins, UDP-glucuronosyltransferase, Glutathione-S-transferase, p53, and DNA damage-regulated gene 1 (pdrg1). Genes related to lipid metabolism were also included.Conclusions
We generated a large amount of transcriptome data from T. dendrolimi, providing a resource for future gene function research. The diapause-related genes identified help reveal the molecular mechanisms of diapause, in T. dendrolimi, and other insect species.
SUBMITTER: Zhang X
PROVIDER: S-EPMC7718664 | biostudies-literature | 2020 Dec
REPOSITORIES: biostudies-literature
BMC genomics 20201204 1
<h4>Background</h4>The parasitoid wasp, Trichogramma dendrolimi, can enter diapause at the prepupal stage. Thus, diapause is an efficient preservation method during the mass production of T. dendrolimi. Previous studies on diapause have mainly focused on ecological characteristics, so the molecular basis of diapause in T. dendrolimi is unknown. We compared transcriptomes of diapause and non-diapause T. dendrolimi to identify key genes and pathways involved in diapause development.<h4>Results</h4 ...[more]