Unknown

Dataset Information

0

Glutaric acid production by systems metabolic engineering of an l-lysine-overproducing Corynebacterium glutamicum.


ABSTRACT: There is increasing industrial demand for five-carbon platform chemicals, particularly glutaric acid, a widely used building block chemical for the synthesis of polyesters and polyamides. Here we report the development of an efficient glutaric acid microbial producer by systems metabolic engineering of an l-lysine-overproducing Corynebacterium glutamicum BE strain. Based on our previous study, an optimal synthetic metabolic pathway comprising Pseudomonas putida l-lysine monooxygenase (davB) and 5-aminovaleramide amidohydrolase (davA) genes and C. glutamicum 4-aminobutyrate aminotransferase (gabT) and succinate-semialdehyde dehydrogenase (gabD) genes, was introduced into the C. glutamicum BE strain. Through system-wide analyses including genome-scale metabolic simulation, comparative transcriptome analysis, and flux response analysis, 11 target genes to be manipulated were identified and expressed at desired levels to increase the supply of direct precursor l-lysine and reduce precursor loss. A glutaric acid exporter encoded by ynfM was discovered and overexpressed to further enhance glutaric acid production. Fermentation conditions, including oxygen transfer rate, batch-phase glucose level, and nutrient feeding strategy, were optimized for the efficient production of glutaric acid. Fed-batch culture of the final engineered strain produced 105.3 g/L of glutaric acid in 69 h without any byproduct. The strategies of metabolic engineering and fermentation optimization described here will be useful for developing engineered microorganisms for the high-level bio-based production of other chemicals of interest to industry.

SUBMITTER: Han T 

PROVIDER: S-EPMC7720191 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

2016-03-30 | GSE79690 | GEO
2016-03-30 | E-GEOD-79690 | biostudies-arrayexpress
| S-EPMC4225761 | biostudies-literature
| S-EPMC5054628 | biostudies-literature
| S-EPMC6138892 | biostudies-other
| S-EPMC7029506 | biostudies-literature
2013-11-26 | E-GEOD-52737 | biostudies-arrayexpress
2013-11-26 | GSE52737 | GEO
| S-EPMC6054733 | biostudies-literature
| S-EPMC2886118 | biostudies-other