How Good Are We in Evaluating a Bedside Head Impulse Test?
Ontology highlight
ABSTRACT: OBJECTIVES:Clinicians performing a horizontal head impulse test (HIT) are looking for a corrective saccade. The detection of such saccades is a challenge. The aim of this study is to assess an expert's likelihood of detecting corrective saccades in subjects with vestibular hypofunction. DESIGN:In a prospective cohort observational study at a tertiary referral hospital, we assessed 365 horizontal HITs performed clinically by an expert neurootologist from a convenience sample of seven patients with unilateral or bilateral deficient vestibulo-ocular reflex (VOR). All HITs were recorded simultaneously by video-oculography, as a gold standard. We evaluated saccades latency and amplitude, head velocity, and gain. RESULTS:Saccade amplitude was statistically the most significant parameter for saccade detection (p < 0.001).The probability of saccade detection was eight times higher for HIT toward the pathological side (p = 0.029). In addition, an increase in saccade amplitude resulted in an increased probability of detection (odds ratio [OR] 1.77 [1.31 to 2.40] per degree, p < 0.001). The sensitivity to detect a saccade amplitude of 1?degree was 92.9% and specificity 79%. Saccade latency and VOR gain did not significantly influence the probability of the physician identifying a saccade (OR 1.02 [0.94 to 1.11] per 10-msec latency and OR 0.84 [0.60 to 1.17] per 0.1 VOR gain increase). CONCLUSIONS:The saccade amplitude is the most important factor for accurate saccade detection in clinically performed head impulse tests. Contrary to current knowledge, saccade latency and VOR gain play a minor role in saccade detection.
SUBMITTER: Korda A
PROVIDER: S-EPMC7722467 | biostudies-literature | 2020 Nov/Dec
REPOSITORIES: biostudies-literature
ACCESS DATA