2-oxoglutarate-dependent dioxygenases: A renaissance in attention for ascorbic acid in plants.
Ontology highlight
ABSTRACT: L-Ascorbic acid (ascorbate, Vitamin C) is an essential human micronutrient that is predominantly obtained from plants. It is known to work as the major antioxidant in plants, and it underpins several environmentally induced stresses due to its use as a co-factor by certain 2-oxoglutarate-dependent (2-OG) dioxygenases [2(OG)-dioxygenases]. It is important to understand the role of 2(OG)-dioxygenases in the biosynthesis of ascorbate. The present study examined contents of ascorbate and protein-protein interaction in nine T-DNA mutants of Arabidopsis containing an insert in their respective (2-OG) dioxygenase genes (At1g20270, At1g68080, At2g17720, At3g06290, At3g28490, At4g35810, At4g35820, At5g18900, At5g66060). In this study, the amount of ascorbate in five of the mutants was shown to be almost two-fold or more than two-fold higher than in the wild type. This result may be a consequence of the insertion of the T-DNA. The prediction of possible protein interactions between 2(OG)-dioxygenases and relevant ascorbate-function players may indicate the oxidative effects of certain dioxygenase proteins in plants. It is expected that certain dioxygenases are actively involved in the metabolic and biosynthetic pathways of ascorbate. This involvement may be of importance to increase ascorbate amounts in plants for human nutrition, and to protect plant species against stress conditions.
SUBMITTER: Mahmood AM
PROVIDER: S-EPMC7723244 | biostudies-literature | 2020
REPOSITORIES: biostudies-literature
ACCESS DATA