Unknown

Dataset Information

0

Intravitreal Injection of Liposomes Loaded with a Histone Deacetylase Inhibitor Promotes Retinal Ganglion Cell Survival in a Mouse Model of Optic Nerve Crush.


ABSTRACT: Various neuroprotective agents have been studied for the treatment of retinal ganglion cell (RGC) diseases, but issues concerning the side effects of systemically administered drugs and the short retention time of intravitreally injected drugs limit their clinical applications. The current study aimed to evaluate the neuroprotective effects of intravitreally injected trichostatin A (TSA)-loaded liposomes in a mouse model of optic nerve crush (ONC) and determine whether TSA-loaded liposomes have therapeutic potential in RGC diseases. The histone deacetylase inhibitor, TSA, was incorporated into polyethylene glycolylated liposomes. C57BL/6J mice were treated with an intravitreal injection of TSA-loaded liposomes and liposomes loaded with a lipophilic fluorescent dye for tracking, immediately after ONC injury. The expression of macroglial and microglial cell markers (glial fibrillary acidic protein and ionized calcium binding adaptor molecule-1), RGC survival, and apoptosis were assessed. We found that the liposomes reached the inner retina. Their fluorescence was detected for up to 10 days after the intravitreal injection, with peak intensity at 3 days postinjection. Intravitreally administered TSA-loaded liposomes significantly decreased reactive gliosis and RGC apoptosis and increased RGC survival in a mouse model of ONC. Our results suggest that TSA-loaded liposomes may help in the treatment of various RGC diseases.

SUBMITTER: Sung MS 

PROVIDER: S-EPMC7730870 | biostudies-literature | 2020 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Intravitreal Injection of Liposomes Loaded with a Histone Deacetylase Inhibitor Promotes Retinal Ganglion Cell Survival in a Mouse Model of Optic Nerve Crush.

Sung Mi Sun MS   Moon Myeong Ju MJ   Thomas Reju George RG   Kim So Young SY   Lee Jun Sung JS   Jeong Yong Yeon YY   Park In-Kyu IK   Park Sang Woo SW  

International journal of molecular sciences 20201206 23


Various neuroprotective agents have been studied for the treatment of retinal ganglion cell (RGC) diseases, but issues concerning the side effects of systemically administered drugs and the short retention time of intravitreally injected drugs limit their clinical applications. The current study aimed to evaluate the neuroprotective effects of intravitreally injected trichostatin A (TSA)-loaded liposomes in a mouse model of optic nerve crush (ONC) and determine whether TSA-loaded liposomes have  ...[more]

Similar Datasets

| S-EPMC6054657 | biostudies-literature
| S-EPMC3630905 | biostudies-other
| S-EPMC8305746 | biostudies-literature
| S-EPMC11328886 | biostudies-literature
| S-EPMC5480866 | biostudies-literature
| S-EPMC4759563 | biostudies-literature
| S-EPMC6219571 | biostudies-literature
| S-EPMC7344373 | biostudies-literature
| S-EPMC5352005 | biostudies-literature
| S-EPMC4669798 | biostudies-other