Bimetallic AgPd/UiO-66 Hybrid Catalysts for Propylene Glycol Oxidation into Lactic Acid.
Ontology highlight
ABSTRACT: Different methods (the wetness impregnation of Ag and Pd precursors dissolved in water or acetonitrile solution, and the double solvent impregnation technique) were employed to immobilize Ag-Pd nanoparticles (NPs) into the pores of the microporous zirconium-based metal-organic framework known as UiO-66. The obtained materials were characterized by using nitrogen adsorption-desorption at -196 °C, powder X-ray diffraction, UV-Vis diffusion reflectance spectroscopy, and transition electron microscopy measurements. Special attention was paid to the acid and redox properties of the obtained materials, which were studied by using temperature-programmed desorption of ammonia (TPD-NH3) and temperature-programmed reduction (TPR-H2) methods. The use of a drying procedure prior to reduction was found to result in metallic NPs which, most likely, formed on the external surface and were larger than corresponding voids of the metal-organic framework. The formation of Ag-Pd alloy or monometallic Ag and Pd depended on the nature of both metal precursors and the impregnation solvent used. Catalytic activity of the AgPd/UiO-66 materials in propylene glycol oxidation was found to be a result of synergistic interaction between the components in AgPd alloyed NPs immobilized in the pore space and on the external surface of UiO-66. The key factor for consistent transformation of propylene glycol into lactic acid was the proximity between redox and acid-base species.
SUBMITTER: Ten S
PROVIDER: S-EPMC7731450 | biostudies-literature | 2020 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA