Unknown

Dataset Information

0

Epitaxial Growth of Wafer-Scale Molybdenum Disulfide/Graphene Heterostructures by Metal-Organic Vapor-Phase Epitaxy and Their Application in Photodetectors.


ABSTRACT: Van der Waals heterostructures have attracted increasing interest, owing to the combined benefits of their constituents. These hybrid nanostructures can be realized via epitaxial growth, which offers a promising approach for the controlled synthesis of the desired crystal phase and the interface between van der Waals layers. Here, the epitaxial growth of a continuous molybdenum disulfide (MoS2) film on large-area graphene, which was directly grown on a sapphire substrate, is reported. Interestingly, the grain size of MoS2 grown on graphene increases, whereas that of MoS2 grown on SiO2 decreases with an increasing amount of hydrogen in the chemical vapor deposition reactor. In addition, to achieve the same quality, MoS2 grown on graphene requires a much lower growth temperature (400 °C) than that grown on SiO2 (580 °C). The MoS2/graphene heterostructure that was epitaxially grown on a transparent platform was investigated to explore its photosensing properties and was found to exhibit inverse photoresponse with highly uniform photoresponsivity in the photodetector pixels fabricated across a full wafer. The MoS2/graphene heterostructure exhibited ultrahigh photoresponsivity (4.3 × 104 A W-1) upon exposure to visible light of a wide range of wavelengths, confirming the growth of a high-quality MoS2/graphene heterostructure with a clean interface.

SUBMITTER: Hoang AT 

PROVIDER: S-EPMC7735665 | biostudies-literature | 2020 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Epitaxial Growth of Wafer-Scale Molybdenum Disulfide/Graphene Heterostructures by Metal-Organic Vapor-Phase Epitaxy and Their Application in Photodetectors.

Hoang Anh Tuan AT   Katiyar Ajit K AK   Shin Heechang H   Mishra Neeraj N   Forti Stiven S   Coletti Camilla C   Ahn Jong-Hyun JH  

ACS applied materials & interfaces 20200917 39


Van der Waals heterostructures have attracted increasing interest, owing to the combined benefits of their constituents. These hybrid nanostructures can be realized via epitaxial growth, which offers a promising approach for the controlled synthesis of the desired crystal phase and the interface between van der Waals layers. Here, the epitaxial growth of a continuous molybdenum disulfide (MoS<sub>2</sub>) film on large-area graphene, which was directly grown on a sapphire substrate, is reported.  ...[more]

Similar Datasets

| S-EPMC4894673 | biostudies-literature
| S-EPMC4660040 | biostudies-literature
| S-EPMC4595826 | biostudies-other
| S-EPMC3899643 | biostudies-literature
| S-EPMC7443864 | biostudies-literature
| S-EPMC5943342 | biostudies-literature
| S-EPMC7469405 | biostudies-literature
| S-EPMC7220367 | biostudies-literature
| S-EPMC5424159 | biostudies-literature
| S-EPMC6567372 | biostudies-literature