Project description:Rationale: Tissue Doppler imaging (TDI) is an echocardiographic method that measures the velocity of moving tissue.Objectives: We applied this technique to the diaphragm to assess the velocity of diaphragmatic muscle motion during contraction and relaxation.Methods: In 20 healthy volunteers, diaphragmatic TDI was performed to assess the pattern of diaphragmatic motion velocity, measure its normal values, and determine the intra- and interobserver variability of measurements. In 116 consecutive ICU patients, diaphragmatic excursion, thickening, and TDI parameters of peak contraction velocity, peak relaxation velocity, velocity-time integral, and TDI-derived maximal relaxation rate were assessed during weaning. In a subgroup of 18 patients, transdiaphragmatic pressure (Pdi)-derived parameters (peak Pdi, pressure-time product, and diaphragmatic maximal relaxation rate) were recorded simultaneously with TDI.Measurements and Main Results: In terms of reproducibility, the intercorrelation coefficients were >0.89 for all TDI parameters (P < 0.001). Healthy volunteers and weaning success patients exhibited lower values for all TDI parameters compared with weaning failure patients, except for velocity-time integral, as follows: peak contraction velocity, 1.35 ± 0.34 versus 1.50 ± 0.59 versus 2.66 ± 2.14 cm/s (P < 0.001); peak relaxation velocity, 1.19 ± 0.39 versus 1.53 ± 0.73 versus 3.36 ± 2.40 cm/s (P < 0.001); and TDI-maximal relaxation rate, 3.64 ± 2.02 versus 10.25 ± 5.88 versus 29.47 ± 23.95 cm/s2 (P < 0.001), respectively. Peak contraction velocity was strongly correlated with peak transdiaphragmatic pressure and pressure-time product, whereas Pdi-maximal relaxation rate was significantly correlated with TDI-maximal relaxation rate.Conclusions: Diaphragmatic tissue Doppler allows real-time assessment of the diaphragmatic tissue motion velocity. Diaphragmatic TDI-derived parameters differentiate patients who fail a weaning trial from those who succeed and correlate well with Pdi-derived parameters.
Project description:Living 3D in vitro tissue cultures, grown from immortalized cell lines, act as living sentinels as pathogenic bacteria invade the tissue. The infection is reported through changes in the intracellular dynamics of the sentinel cells caused by the disruption of normal cellular function by the infecting bacteria. Here, the Doppler imaging of infected sentinels shows the dynamic characteristics of infections. Invasive Salmonella enterica serovar Enteritidis and Listeria monocytogenes penetrate through multicellular tumor spheroids, while non-invasive strains of Escherichia coli and Listeria innocua remain isolated outside the cells, generating different Doppler signatures. Phase distributions caused by intracellular transport display Lévy statistics, introducing a Lévy-alpha spectroscopy of bacterial invasion. Antibiotic treatment of infected spheroids, monitored through time-dependent Doppler shifts, can distinguish drug-resistant relative to non-resistant strains. This use of intracellular Doppler spectroscopy of living tissue sentinels opens a new class of microbial assay with potential importance for studying the emergence of antibiotic resistance.
Project description:BackgroundHemodynamic and functional evaluation with Doppler and tissue Doppler study as a part of comprehensive echocardiography is essential but normal reference values have never been reported from Korean normal population especially according to age and sex.MethodsUsing Normal echOcaRdiographic Measurements in a KoreAn popuLation study subjects, we obtained normal reference values for Doppler and tissue Doppler echocardiography including tricuspid annular velocities according to current guidelines and compared values according to gender and age groups.ResultsMitral early diastolic (E) and late diastolic (A) velocity as well as E/A ratio were significantly higher in women compared to those in men. Conversely, mitral peak systolic and late diastolic annular velocity in both septal and lateral mitral annulus were significantly lower in women compared to those in men. However, there were no significant differences in both septal and lateral mitral early diastolic annular (e') velocity between men and women. In both men and women, mitral E velocity and its deceleration time as well as both E/A and E/e' ratio considerably increased with age. There were no significant differences in tricuspid inflow velocities and tricuspid lateral annular velocities between men and women except e' velocity, which was significantly higher in women compared to that in men. However, changes in both tricuspid inflow and lateral annular velocities according to age were similar to those in mitral velocities.ConclusionSince there were significant differences in Doppler and tissue Doppler echocardiographic variables between men and women and changes according to age were even more considerable in both gender groups, normal Doppler echocardiographic values should be differentially applied based on age and sex.
Project description:BACKGROUND: Studies suggest the physical and mechanical properties of vessel walls and plaque may be of clinical value in the diagnosis and treatment of cardiovascular atherosclerotic disease. The purpose of this pilot study was to investigate the potential clinical application of ultrasound Tissue Doppler Imaging (TDI) of Arterial Wall Motion (AWM) and to quantify simple wall motion indices in normal and diseased carotid arteries. METHODS: 224 normal and diseased carotid arteries (0-100% stenoses) were imaged in 126 patients (age 25-88 years, mean 68 +/- 11). Longitudinal sections of the carotid bifurcation were imaged using a Philips HDI5000 scanner and L12-5 probe under optimized TDI settings. Temporal and spatial AWMs were analyzed to evaluate the vessel wall displacements and spatial gradients at peak systole averaged over 5 cardiac cycles. RESULTS: AWM data were successfully extracted in 91% of cases. Within the carotid bifurcation/plaque region, the maximum wall dilation at peak systole ranged from -100 to 750 microns, mean 335 +/- 138 microns. Maximum wall dilation spatial gradients ranged 0-0.49, mean 0.14 +/- 0.08. The AWM parameters showed a wide variation and had poor correlation with stenoses severity. Case studies illustrated a variety of pertinent qualitative and quantitative wall motion features related to the biophysics of arterial disease. CONCLUSION: Our clinical experience, using a challenging but realistic imaging protocol, suggests the use of simple quantitative AWM measures may have limitations due to high variability. Despite this, pertinent features of AWM in normal and diseased arteries demonstrate the potential clinical benefit of the biomechanical information provided by TDI.
Project description:ObjectiveLaser-based tissue perfusion monitoring techniques have been increasingly used in animal and human research to assess blood flow. However, these techniques use arbitrary units, and knowledge about their comparability is scarce. This study aimed to model the relationship between laser speckle contrast imaging (LSCI) and laser Doppler perfusion imaging (LDPI), for measuring tissue perfusion over a wide range of blood flux values.MethodsFifteen healthy volunteers (53% female, median age 29 [IQR 22-40] years) were enrolled in this study. We performed iontophoresis with sodium nitroprusside on the forearm to induce regional vasodilation to increase skin blood flux. Besides, a stepwise vascular occlusion was applied on the contralateral upper arm to reduce blood flux. Both techniques were compared using a linear mixed model analysis.ResultsBaseline blood flux values measured by LSCI were 33 ± 6.5 arbitrary unit (AU) (Coefficient of variation [CV] = 20%) and by LDPI 60 ± 11.5 AU (CV = 19%). At the end of the iontophoresis protocol, the regional blood flux increased to 724 ± 412% and 259 ± 87% of baseline measured by LDPI and LSCI, respectively. On the other hand, during the stepwise vascular occlusion test, the blood flux reduced to 212 ± 40% and 412 ± 177% of its baseline at LDPI and LSCI, respectively. A strong correlation was found between the LSCI and LDPI instruments at increased blood flux with respect to baseline skin blood flux; however, the correlation was weak at reduced blood flux with respect to baseline.DiscussionLSCI and LDPI instruments are highly linear for blood flux higher than baseline skin blood flux; however, the correlation decreased for blood flux lower than baseline. This study's findings could be a basis for using LSCI in specific patient populations, such as burn care.
Project description:BackgroundCardiotoxic effects of anthracycline therapy are a major cause of morbidity for childhood cancer survivors. The aim of this retrospective evaluation is to assess the efficacy of Tissue Doppler Imaging in the early detection of myocardial alterations in these patients.MethodsA population of 50 childhood cancer survivors (32 males and 18 females) who have been treated with anthracyclines was evaluated by standard and TDI echocardiographic examination of the basal and median region of the interventricular septum (IVSb, IVSm), of the left ventricular posterior wall (LVPWb, LVPWm), and of the mitral annulus; the results were compared with those obtained from a population of 50 healthy age-matched and sex-matched controls by using the Student test. The clinical and echocardiographic data of the two groups were compared also with the independent samples t-test. All data were expressed as mean ± standard deviation. A two-tailed P-value < 0.05 was considered statistically significant. Statistical analysis was performed using STATA 7.0.ResultsThe case-control analysis showed statistically significant differences (p < 0,05) between the patients and the controls values. The systolic performance of the patients was normal (LVEF (p = 0,0029) and LVFS (p = 0,0002)). Statistically significant differences between patients and controls were found for diastolic function measurements obtained with PW Doppler such as IVRT (p = 0,0000), DT (p = 0,0041), E (p = 0,0000), A (p = 0,0458), even if E/A ratio was not altered. TDI analysis also show significant differences between patients and controls in both LVPW and IVS (basal and middle segments); E/E' ratio and E'/A' ratio did not vary significantly. Linear Regression and multivariate analysis showed that Hematopoietic Stem Cell Transplantation had the highest impact on our measurements.ConclusionsThe results showed a myocardial diastolic impairment with preserved ejection fraction. Since the median follow-up time of our cohort was 2 years, further evaluation is needed to better define the diastolic alterations. TDI analysis showed high sensitivity for the detection of mild myocardial dysfunction; the implementation of this novel method as standard practice in the follow-up of selected childhood cancer survivors might help to achieve a better management of long-term complications of cardiotoxic chemotherapy.
Project description:Laser Doppler Vibrometry (LDV) has been widely used in engineering applications involving non-contact vibration and sound measurements. This technique has also been used in some biomedical applications including hearing research. The detectable frequencies are in the range of near-DC to 1 GHz or higher. This paper reviews applications of LDV in biomedical engineering and proposes new medical imaging applications based on measuring surface vibrations of tissues and organs. Tests were conducted on human skin using single point and scanning laser vibrometers. These tests suggest that skin vibrations due to the forcing excitation from the heart can be used in imaging of blood flow. The results of these tests illustrate the potential of such vibration measurements in a variety of diagnostic medical imaging applications including blood flow/restrictions, real-time monitoring of blood pressure variations, wound healing, muscle movements, etc. The fact that the measurements can be conducted remotely (non-contact) is an important benefit that adds to the promise of this approach.
Project description:OBJECTIVES:Bedside ultrasound techniques have the unique ability to produce instantaneous, dynamic images, and have demonstrated widespread utility in both emergency and critical care settings. The aim of this article is to introduce a novel application of this imaging modality by utilizing an ultrasound based mathematical model to assess respiratory function. With validation, the proposed models have the potential to predict pulmonary function in patients who cannot adequately participate in standard spirometric techniques (inability to form tight seal with mouthpiece, etc.). METHODS:Ultrasound was used to measure diaphragm thickness (Tdi) in a small population of healthy, adult males at various points of the respiratory cycle. Each measurement corresponded to a generated negative inspiratory force (NIF), determined by a handheld meter. The data was analyzed using mixed models to produce two representative mathematical models. RESULTS:Two mathematical models represented the relationship between Tdi and NIFmax, or maximum inspiratory pressure (MIP), both of which were statistically significant with p-values <0.005: 1. log(NIF) = -1.32+4.02×log(Tdi); and 2. NIF = -8.19+(2.55 × Tdi)+(1.79×(Tdi2)). CONCLUSIONS:With validation, these models intend to provide a method of estimating MIP, by way of diaphragm ultrasound measurements, thereby allowing evaluation of respiratory function in patients who may be unable to reliably participate in standard spirometric tests.