Unknown

Dataset Information

0

Machine Learning to Predict Lower Extremity Musculoskeletal Injury Risk in Student Athletes.


ABSTRACT: Injury rates in student athletes are high and often unpredictable. Injury risk factors are not agreed upon and often not validated. Here, we present a random-forest machine learning methodology for identifying the most significant injury risk factors and develop a model of lower extremity musculoskeletal injury risk in student athletes with physical performance metrics spanning joint strength measured with force transducers, postural stability measured using a force plate, and flexibility, measured with a goniometer, combined with previous injury metrics and athlete demographics. We tested our model in a population of 122 student athletes with performance metrics for the lower extremity musculoskeletal system and achieved an injury risk accuracy of 79% and identified significant injury risk factors, that could be used to increase accuracy of injury risk assessments, implement timely interventions, and decrease the number of career-ending or chronic injuries among student athletes.

SUBMITTER: Henriquez M 

PROVIDER: S-EPMC7739722 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

Machine Learning to Predict Lower Extremity Musculoskeletal Injury Risk in Student Athletes.

Henriquez Maria M   Sumner Jacob J   Faherty Mallory M   Sell Timothy T   Bent Brinnae B  

Frontiers in sports and active living 20201119


Injury rates in student athletes are high and often unpredictable. Injury risk factors are not agreed upon and often not validated. Here, we present a random-forest machine learning methodology for identifying the most significant injury risk factors and develop a model of lower extremity musculoskeletal injury risk in student athletes with physical performance metrics spanning joint strength measured with force transducers, postural stability measured using a force plate, and flexibility, measu  ...[more]

Similar Datasets

| S-EPMC4387723 | biostudies-other
| S-EPMC9992135 | biostudies-literature
| S-EPMC5555509 | biostudies-other
| S-EPMC4851683 | biostudies-literature
| S-EPMC7428982 | biostudies-literature
| S-EPMC5089357 | biostudies-literature
| S-EPMC7879202 | biostudies-literature
| S-EPMC9038775 | biostudies-literature
| S-EPMC3968426 | biostudies-literature