Exploring the neural basis of fear produced by mental imagery: imaginal exposure in individuals fearful of spiders.
Ontology highlight
ABSTRACT: Imaginal exposure, i.e. reducing fear using exposure to mental imagery, is a widely used psychological treatment technique for dysfunctional fears. Yet, little is known about its underlying neural mechanisms. The present study examines the neural basis of imaginal exposure using a novel experimental procedure consisting of repeated exposure to flashpoint mental imagery of phobic (spiders) and neutral (gloves) stimuli. Whether the 10 min long imaginal exposure procedure could reduce fear responses was examined one week later. Thirty participants fearful of spiders underwent the experimental procedure. Neural activity was assessed using functional magnetic resonance imaging (session 1). Subjective fear and skin conductance responses were measured throughout the study (sessions 1 and 2). Imaginal exposure evoked intense fear and heightened skin conductance responses, and indicated robust activation in several brain regions, including amygdala, midcingulate cortex and insula. Findings demonstrate that neural activity in fear-processing brain areas can be elicited solely by generating a mental image of a phobic stimulus, that is, in the absence of the percept. Relevant for treatment development, results reveal that a single 10 min session of brief exposures to flashpoint mental imagery can lead to lasting reductions in phobic fear at both the subjective and physiological levels. This article is part of the theme issue 'Offline perception: voluntary and spontaneous perceptual experiences without matching external stimulation'.
SUBMITTER: Hoppe JM
PROVIDER: S-EPMC7741089 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA