Unknown

Dataset Information

0

Reproducible breath metabolite changes in children with SARS-CoV-2 infection.


ABSTRACT: SARS-CoV-2 infection is diagnosed through detection of specific viral nucleic acid or antigens from respiratory samples. These techniques are relatively expensive, slow, and susceptible to false-negative results. A rapid non-invasive method to detect infection would be highly advantageous. Compelling evidence from canine biosensors and studies of adults with COVID-19 suggests that infection reproducibly alters human volatile organic compounds (VOCs) profiles. To determine whether pediatric infection is associated with VOC changes, we enrolled SARS-CoV-2-infected and -uninfected children admitted to a major pediatric academic medical center. Breath samples were collected from children and analyzed through state-of-the-art GCxGC-ToFMS. Isolated features included 84 targeted VOCs. Candidate biomarkers that were correlated with infection status were subsequently validated in a second, independent cohort of children. We thus find that six volatile organic compounds are significantly and reproducibly increased in the breath of SARS-CoV-2-infected children. Three aldehydes (octanal, nonanal, and heptanal) drew special attention, as aldehydes are also elevated in the breath of adults with COVID-19. Together, these biomarkers demonstrate high accuracy for distinguishing pediatric SARS-CoV-2 infection and support the ongoing development of novel breath-based diagnostics.

SUBMITTER: Berna AZ 

PROVIDER: S-EPMC7743102 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8353987 | biostudies-literature
| S-EPMC10140675 | biostudies-literature
| S-EPMC7121177 | biostudies-literature
| S-SCDT-10_1038-S44318-024-00061-0 | biostudies-other
| S-EPMC10930087 | biostudies-literature
| 12454 | ecrin-mdr-crc
2013-07-31 | E-GEOD-47960 | biostudies-arrayexpress
2013-07-31 | E-GEOD-47961 | biostudies-arrayexpress
2013-07-31 | E-GEOD-47962 | biostudies-arrayexpress
| S-SCDT-EMBOJ-2020-106501 | biostudies-other