Project description:Radiation source localization and characterization are challenging tasks that currently require complex analyses for interpretation. Mixed reality (MR) technologies are at the verge of wide scale adoption and can assist in the visualization of complex data. Herein, we demonstrate real-time visualization of gamma ray and neutron radiation detector data in MR using the Microsoft HoloLens 2 smart glasses, significantly reducing user interpretation burden. Radiation imaging systems typically use double-scatter events of gamma rays or fast neutrons to reconstruct the incidence directional information, thus enabling source localization. The calculated images and estimated ’hot spots’ are then often displayed in 2D angular space projections on screens. By combining a state-of-the-art dual particle imaging system with HoloLens 2, we propose to display the data directly to the user via the head-mounted MR smart glasses, presenting the directional information as an overlay to the user’s 3D visual experience. We describe an open source implementation using efficient data transfer, image calculation, and 3D engine. We thereby demonstrate for the first time a real-time user experience to display fast neutron or gamma ray images from various radioactive sources set around the detector. We also introduce an alternative source search mode for situations of low event rates using a neural network and simulation based training data to provide a fast estimation of the source’s angular direction. Using MR for radiation detection provides a more intuitive perception of radioactivity and can be applied in routine radiation monitoring, education & training, emergency scenarios, or inspections.
Project description:BackgroundThe surgical robot offers the potential to integrate multiple views into the surgical console screen, and for the assistant's monitors to provide real-time views of both fields of operation. This function has the potential to increase patient safety and surgical efficiency during an operation. Herein, we present a novel application of the multi-image display system for simultaneous visualization of endoscopic views during various complex robotic gastrointestinal operations. All operations were performed using the da Vinci Surgical System (Intuitive Surgical, Sunnyvale, CA, USA) with the assistance of Tilepro, multi-input display software, during employment of the intraoperative scopes. Three robotic operations, left hepatectomy with intraoperative common bile duct exploration, low anterior resection, and radical distal subtotal gastrectomy with intracorporeal gastrojejunostomy, were performed by three different surgeons at a tertiary academic medical center.ResultsThe three complex robotic abdominal operations were successfully completed without difficulty or intraoperative complications. The use of the Tilepro to simultaneously visualize the images from the colonoscope, gastroscope, and choledochoscope made it possible to perform additional intraoperative endoscopic procedures without extra monitors or interference with the operations.ConclusionWe present a novel use of the multi-input display program on the da Vinci Surgical System to facilitate the performance of intraoperative endoscopies during complex robotic operations. Our study offers another potentially beneficial application of the robotic surgery platform toward integration and simplification of combining additional procedures with complex minimally invasive operations.
Project description:BackgroundImmersive virtual reality (VR) is a promising therapy to improve the experience of patients with critical illness and may help avoid postdischarge functional impairments. However, the determinants of interest and usability may vary locally and reports of uptake in the literature are variable.ObjectiveThe aim of this mixed methods feasibility study was to assess the acceptability and potential utility of immersive VR in critically ill patients at a single institution.MethodsAdults without delirium who were admitted to 1 of 2 intensive care units were offered the opportunity to participate in 5-15 minutes of immersive VR delivered by a VR headset. Patient vital signs, heart rate variability, mood, and pain were assessed before and after the VR experience. Pre-post comparisons were performed using paired 2-sided t tests. A semistructured interview was administered after the VR experience. Patient descriptions of the experience, issues, and potential uses were summarized with thematic analysis.ResultsOf the 35 patients offered the chance to participate, 20 (57%) agreed to partake in the immersive VR experience, with no difference in participation rate by age. Improvements were observed in overall mood (mean difference 1.8 points, 95% CI 0.6-3.0; P=.002), anxiety (difference of 1.7 points, 95% CI 0.8-2.7; P=.001), and pain (difference of 1.3 points, 95% CI 0.5-2.1; P=.003) assessed on 1-10 scales. The heart rate changed by a mean of -1.1 (95% CI -0.3 to -1.9; P=.008) beats per minute (bpm) from a baseline of 86.1 (SD 11.8) bpm and heart rate variability, assessed by the stress index (SI), changed by a mean of -5.0 (95% CI -1.5 to -8.5; P=.004) seconds-2 from a baseline SI of 40.0 (SD 23) seconds-2. Patients commented on the potential for the therapy to address pain, lessen anxiety, and facilitate calmness. Technical challenges were minimal and there were no adverse effects observed.ConclusionsPatient acceptance of immersive VR was high in a mostly medical intensive care population with little prior VR experience. Patients commented on the potential of immersive VR to ameliorate cognitive and emotional symptoms. Investigators can consider integrating minimally modified commercial VR headsets into the existing intensive care unit workflow to further assess VR's efficacy for a variety of endpoints.
Project description:To assess the feasibility of administering Patient Reported Outcomes Measures (PROMs) in patients treated with ablation for cardiac arrhythmias, and to conduct the first stage of development and testing of a new PROM tool.A new tool was developed by a multidisciplinary team and tested alongside an adaptation of the patient perception of arrhythmia questionnaire (PPAQ) and EQ-5D-5L in a multicentre retrospective audit involving 791 consecutive cardiac arrhythmia patients treated with catheter ablation at three UK centres over 13 months. Data were recorded in the National Cardiac Rhythm Management Database, part of the National Institute for Cardiovascular Outcomes Research. The response rate was 71.9% (n = 569). Patients reported significant improvements across all outcomes and impacts, with reductions in symptoms of 51.7% (heart racing), 33.9% (fatigue) 31.8% (heart flutters), 43.5% (dizziness), 38.6% (breathlessness), 44.2% (chest pressure), 33.1% (trouble concentrating), 15.9% (headache), 28.3% (neck pressure), and 23.4% (fainting) (P < 0.001). The mean number of social days affected reduced by 7.49 days/month (P < 0.001); mean work/school days affected/month reduced by 6.26 (P < 0.001); mean GP/hospital visits reduced by 1.36 days/month (P < 0.001). The procedure met patient expectations in 72% of responders.The high response rate suggests that the use of PROMs in this patient group is feasible, with rates equalling those of the National PROMs Programme. The results showed that patients experienced significant improvements in their quality of life following ablation, while feedback allowed the tools to be improved. Further work is required to validate these tools; however, the findings suggest that PROMs could be useful in the audit of ablation techniques.
Project description:Image-guided cardiovascular interventions are rapidly evolving procedures that necessitate imaging systems capable of rapid data acquisition and low-latency image reconstruction and visualization. Compared to alternative modalities, Magnetic Resonance Imaging (MRI) is attractive for guidance in complex interventional settings thanks to excellent soft tissue contrast and large fields-of-view without exposure to ionizing radiation. However, most clinically deployed MRI sequences and visualization pipelines exhibit poor latency characteristics, and spatial integration of complex anatomy and device orientation can be challenging on conventional 2D displays. This work demonstrates a proof-of-concept system linking real-time cardiac MR image acquisition, online low-latency reconstruction, and a stereoscopic display to support further development in real-time MR-guided intervention. Data are acquired using an undersampled, radial trajectory and reconstructed via parallelized through-time radial generalized autocalibrating partially parallel acquisition (GRAPPA) implemented on graphics processing units. Images are rendered for display in a stereoscopic mixed-reality head-mounted display. The system is successfully tested by imaging standard cardiac views in healthy volunteers. Datasets comprised of one slice (46 ms), two slices (92 ms), and three slices (138 ms) are collected, with the acquisition time of each listed in parentheses. Images are displayed with latencies of 42 ms/frame or less for all three conditions. Volumetric data are acquired at one volume per heartbeat with acquisition times of 467 ms and 588 ms when 8 and 12 partitions are acquired, respectively. Volumes are displayed with a latency of 286 ms or less. The faster-than-acquisition latencies for both planar and volumetric display enable real-time 3D visualization of the heart.
Project description:BACKGROUND:The coronavirus disease (COVID-19) pandemic has led to rapid acceleration in the deployment of new digital technologies to improve both accessibility to and quality of care, and to protect staff. Mixed-reality (MR) technology is the latest iteration of telemedicine innovation; it is a logical next step in the move toward the provision of digitally supported clinical care and medical education. This technology has the potential to revolutionize care both during and after the COVID-19 pandemic. OBJECTIVE:This pilot project sought to deploy the HoloLens2 MR device to support the delivery of remote care in COVID-19 hospital environments. METHODS:A prospective, observational, nested cohort evaluation of the HoloLens2 was undertaken across three distinct clinical clusters in a teaching hospital in the United Kingdom. Data pertaining to staff exposure to high-risk COVID-19 environments and personal protective equipment (PPE) use by clinical staff (N=28) were collected, and assessments of acceptability and feasibility were conducted. RESULTS:The deployment of the HoloLens2 led to a 51.5% reduction in time exposed to harm for staff looking after COVID-19 patients (3.32 vs 1.63 hours/day/staff member; P=.002), and an 83.1% reduction in the amount of PPE used (178 vs 30 items/round/day; P=.02). This represents 222.98 hours of reduced staff exposure to COVID-19, and 3100 fewer PPE items used each week across the three clusters evaluated. The majority of staff using the device agreed it was easy to set up and comfortable to wear, improved the quality of care and decision making, and led to better teamwork and communication. In total, 89.3% (25/28) of users felt that their clinical team was safer when using the HoloLens2. CONCLUSIONS:New technologies have a role in minimizing exposure to nosocomial infection, optimizing the use of PPE, and enhancing aspects of care. Deploying such technologies at pace requires context-specific information security, infection control, user experience, and workflow integration to be addressed at the outset and led by clinical end-users. The deployment of new telemedicine technology must be supported with objective evidence for its safety and effectiveness to ensure maximum impact.
Project description:IntroductionExcessive pain during medical procedures is a widespread problem but is especially problematic during daily wound care of patients with severe burn injuries.MethodsBurn patients report 35-50% reductions in procedural pain while in a distracting immersive virtual reality, and fMRI brain scans show associated reductions in pain-related brain activity during VR. VR distraction appears to be most effective for patients with the highest pain intensity levels. VR is thought to reduce pain by directing patients' attention into the virtual world, leaving less attention available to process incoming neural signals from pain receptors.ConclusionsWe review evidence from clinical and laboratory research studies exploring Virtual Reality analgesia, concentrating primarily on the work ongoing within our group. We briefly describe how VR pain distraction systems have been tailored to the unique needs of burn patients to date, and speculate about how VR systems could be tailored to the needs of other patient populations in the future.
Project description:BackgroundDelirium is a common complication after cardiac surgical procedures and is associated with increased morbidity and mortality. However, whether rigorously assessed postoperative delirium is associated with an increased length of stay in the intensive care unit (LOS-ICU), length of stay (LOS), and hospital charges is not clear.MethodsPatients (n = 66) undergoing coronary artery bypass or valve operations, or both, were enrolled in a nested cohort study. Rigorous delirium assessments were conducted using the Confusion Assessment Method. LOS-ICU and LOS were obtained from the medical record, and hospital charges were obtained from administrative data reported to the state. Because of the skewed distribution of outcome variables, outcomes were compared using rank-sum tests, as well as median regression incorporating propensity scores.ResultsPatients who developed delirium (56%) versus no delirium (43%) had increased median LOS-ICU (75.6 hours [interquartile range (IQR): 43.6 to 136.8] vs. 29.7 hours [IQR: 21.7 to 46.0]; p = 0.002), increased median LOS (9 days [IQR: 6 to 16] vs. 7 days [IQR: 5 to 8]; p = 0.006), and increased median hospital charges ($51,805 [IQR: $44,041 to $80,238] vs. $41,576 [IQR: $35,748 to $43,660]; p = 0.002). In propensity score models adjusted for patient-related and surgical characteristics and complications, the results for LOS-ICU and cost remained highly significant, although the results for LOS were attenuated on the basis of the specific statistical model. Increased severity of delirium was associated with both increased LOS-ICU and increased charges in a dose-response manner.ConclusionsDelirium after cardiac surgical procedures is independently associated with both increased LOS-ICU and higher hospital charges. Because delirium is potentially preventable, targeted delirium-prevention protocols for high-risk patients may represent an important strategy for quality improvement.
Project description:A fluoroscopy-based approach to an electrophysiological procedure is widely validated and has been recognized as the gold standard for a long time. The use of fluoroscopy exposes both the healthcare staff and the patient to a non-negligible dose of radiation. To minimize the risks associated with the use of fluoroscopy, it would be reasonable to perform ablation procedures with zero fluoroscopy. This approach is widely used in simple ablation procedures, but not in complex procedures. In atrial fibrillation (AF) ablation procedures, fluoroscopy remains the main technology used, in particular to guide the transseptal puncture. Main results and Implications. We present a workflow to perform a complete zero-fluoroscopy ablation for AF ablation procedures using a 3D electro-anatomical mapping system, intracardiac echocardiography and a novel steerable guiding sheath that can be visualized on the mapping system. We present two cases, one with paroxysmal AF and the other one with persistent AF during which we applied this novel workflow achieving a successful pulmonary vein isolation without complications and complete zero-fluoroscopy exposure.
Project description:Olfaction has not been explored in virtual reality environments to the same extent as the visual and auditory senses. Much less research has been done with olfactory devices, and very few of them can be easily integrated into virtual reality applications. The inclusion of odor into virtual reality simulations using a chemical device involves challenges such as possible diffusion into undesired areas, slow dissipation, the definition of various parameters (e.g., concentration, frequency, and duration), and an appropriate software solution for controlling the diffusion of the odor. This paper aims to present a non-intrusive, mobile, low cost and wearable olfactory display, and a software service that allows the developer to easily create applications that include olfactory stimuli integrated with virtual reality headset glasses. We also present a case study conducted with 32 people to evaluate their satisfaction when using the olfactory display. Our findings indicate that our solution works as expected, producing odor properly and being easy to integrate to applications.Supplementary informationThe online version contains supplementary material available at 10.1007/s00530-022-00908-8.