Project description:RATIONALE:Experimental evidence suggests that CDHR3 (cadherin-related family member 3) is a receptor for rhinovirus (RV)-C, and a missense variant in this gene (rs6967330) is associated with childhood asthma with severe exacerbations. OBJECTIVES:To determine whether rs6967330 influences RV-C infections and illnesses in early childhood. METHODS:We studied associations between rs6967330 and respiratory infections and illnesses in the COPSAC2010 (Copenhagen Prospective Studies on Asthma in Childhood 2010) and COAST (Childhood Origins of Asthma Birth Cohort Study) birth cohorts, where respiratory infections were monitored prospectively for the first 3 years of life. Nasal samples were collected during acute infections in both cohorts and during asymptomatic periods in COAST and analyzed for RV-A, RV-B, and RV-C, and other common respiratory viruses. MEASUREMENTS AND MAIN RESULTS:The CDHR3 asthma risk allele (rs6967330-A) was associated with increased risk of respiratory tract illnesses (incidence risk ratio [IRR]?=?1.14 [95% confidence interval, 1.05-1.23]; P?=?0.003). In particular, this variant was associated with risk of respiratory episodes with detection of RV-C in COPSAC2010 (IRR?=?1.89 [1.14-3.05]; P?=?0.01) and in COAST (IRR?=?1.37 [1.02-1.82]; P?=?0.03) children, and in a combined meta-analysis (IRR?=?1.51 [1.13-2.02]; P?=?0.006). In contrast, the variant was not associated with illnesses related to other viruses (IRR?=?1.07 [0.92-1.25]; P?=?0.37). Consistent with these observations, the CDHR3 variant was associated with increased detection of RV-C, but not of other viruses during scheduled visits at specific ages. CONCLUSIONS:The CDHR3 asthma risk allele is associated specifically with RV-C illnesses in two birth cohorts. This clinical evidence supports earlier molecular evidence indicating that CDHR3 functions as an RV-C receptor, and raises the possibility of preventing RV-C infections by targeting CDHR3.
Project description:Cadherin related family member 2 (CDHR2) belongs to the protocadherin family and is abundant in normal liver, kidney, and colon tissues, but weakly expressed in cancers arising from these tissues. In this study, we demonstrated that CDHR2 was highly expressed in para-cancer tissues of human hepatocellular carcinoma (HCC), but significantly downregulated or silenced in 85.7% (6/7) of HCC cell lines by both semi-quantitative PCR and western blot, and 79.1% (19/24) and 80.2% (89/111) of tumor tissues from patients with HCC by semi-quantitative PCR, and immunohistochemistry, respectively. Interestingly, CpG islands in the promoter of CDHR2 gene were hypermethylated in HCC cell lines and tissues compared with the para-cancer tissues by methylation-specific PCR analysis, leading to transcriptional repression and silencing of CDHR2 in HCC. In addition, CDHR2 overexpression by lentiviral vectors had suppressive effects on HCC cell growth and proliferation, as evidenced by prolonged cell doubling time and reduced colony-forming ability in vitro, as well as by decreased tumorigenicity in vivo. Mechanistically, CDHR2 overexpression resulted in AKT dephosphorylation along with downregulation of cyclooxygenase-2 (COX2), a downstream target of AKT. This effect was reversed by myristoylated AKT, a constitutively active form of AKT, suggesting an involvement of CDHR2-AKT-COX2 axis in the suppression of HCC growth. Taken together, our study identified CDHR2 as a novel tumor suppressor in HCC and provided a new therapeutic target for HCC.
Project description:Members of rhinovirus C (RV-C) species are more likely to cause wheezing illnesses and asthma exacerbations compared with other rhinoviruses. The cellular receptor for these viruses was heretofore unknown. We report here that expression of human cadherin-related family member 3 (CDHR3) enables the cells normally unsusceptible to RV-C infection to support both virus binding and replication. A coding single nucleotide polymorphism (rs6967330, C529Y) was previously linked to greater cell-surface expression of CDHR3 protein, and an increased risk of wheezing illnesses and hospitalizations for childhood asthma. Compared with wild-type CDHR3, cells transfected with the CDHR3-Y529 variant had about 10-fold increases in RV-C binding and progeny yields. We developed a transduced HeLa cell line (HeLa-E8) stably expressing CDHR3-Y529 that supports RV-C propagation in vitro. Modeling of CDHR3 structure identified potential binding sites that could impact the virus surface in regions that are highly conserved among all RV-C types. Our findings identify that the asthma susceptibility gene product CDHR3 mediates RV-C entry into host cells, and suggest that rs6967330 mutation could be a risk factor for RV-C wheezing illnesses.
Project description:Salmonella enterica is a species of bacteria that is a major cause of enteritis across the globe, while certain serovars cause typhoid, a more serious disease associated with a significant mortality rate. Type III secreted effectors are major contributors to the pathogenesis of Salmonella infections. Genes encoding effectors are acquired via horizontal gene transfer, and a subset are encoded within active phage lysogens. Because the acquisition of effectors is in flux, the complement of effectors possessed by various Salmonella strains frequently differs. By comparing the genome sequences of S. enterica serovar Typhimurium strain SL1344 with LT2, we identified a gene with significant similarity to SseK/NleB type III secreted effector proteins within a phage ST64B lysogen that is absent from LT2. We have named this gene sseK3. SseK3 was co-regulated with the SPI-2 type III secretion system in vitro and inside host cells, and was also injected into infected host cells. While no role for SseK3 in virulence could be identified, a role for the other family members in murine typhoid was found. SseK3 and other phage-encoded effectors were found to have a significant but sparse distribution in the available Salmonella genome sequences, indicating the potential for more uncharacterised effectors to be present in less studied serovars. These phage-encoded effectors may be principle subjects of contemporary selective processes shaping Salmonella-host interactions.
Project description:BackgroundGroup 2 innate lymphoid cells (ILC2s) are critical mediators of type 2 respiratory inflammation, releasing IL-5 and IL-13 and promoting the pulmonary eosinophilia associated with allergen provocation. Although ILC2s have been shown to promote eosinophil activities, the role of eosinophils in group 2 innate lymphoid cell (ILC2) responses is less well defined.ObjectiveWe sought to investigate the role of eosinophils in activation of ILC2s in models of allergic asthma and in vitro.MethodsInducible eosinophil-deficient mice were exposed to allergic respiratory inflammation models of asthma, such as ovalbumin or house dust mite challenge, or to innate models of type 2 airway inflammation, such as inhalation of IL-33. Eosinophil-specific IL-4/13-deficient mice were used to address the specific roles for eosinophil-derived cytokines. Direct cell interactions between ILC2s and eosinophils were assessed by in vitro culture experiments.ResultsTargeted depletion of eosinophils resulted in significant reductions of total and IL-5+ and IL-13+ lung ILC2s in all models of respiratory inflammation. This correlated with reductions in IL-13 levels and mucus in the airway. Eosinophil-derived IL-4/13 was necessary for both eosinophil and ILC2 accumulation in lung in allergen models. In vitro, eosinophils released soluble mediators that induced ILC2 proliferation and G protein-coupled receptor-dependent chemotaxis of ILC2s. Coculture of ILC2s and IL-33-activated eosinophils resulted in transcriptome changes in both ILC2s and eosinophils, suggesting potential novel reciprocal interactions.ConclusionThese studies demonstrate that eosinophils play a reciprocal role in ILC2 effector functions as part of both adaptive and innate type 2 pulmonary inflammatory events.
Project description:Reduced expression of Cadherin-Related Family Member 5 (CDHR5) was recently found implied in carcinogenesis of colon cancer, but its role in other tumors is unknown. We aimed to analyze the expression of CDHR5 in different subtypes of renal cell carcinoma. CDHR5 expression was immunohistochemically examined using tissue micro arrays (TMAs) covering 279 patients with primary renal cell carcinoma. Additionally, expression data from the TCGA (The Cancer Genome Atlas) of an independent cohort of 489 clear-cell RCC cases was evaluated. CDHR5 protein expression was found in 74.9% of cases, with higher levels seen in clear cell and papillary RCC. In the univariate analysis CDHR5 expression was significantly associated with a longer overall survival of RCC patients at the protein (p = 0.026, HR = 0.56) and transcript levels (TCGA-cohort: p = 0.0002, HR = 0.55). Importantly, differences in survival times were confirmed independently in multivariate analyses in a model with common clinicopathological variables at the transcript level (p = 0.0097, HR = 0.65). Investigation of the putative functional role of CDHR5 using TCGA data and Enrichment analysis for Gene Ontology and Pathways revealed associations with many metabolic and some tumor growth-associated processes and pathways. CDHR5 expression appears to be a promising and new independent prognostic biomarker in renal cell carcinoma.
Project description:In mice, interleukin-18 (IL-18) regulates Th1- or Th2-type immune responses depending on the cytokine environment and effector cells involved, and the ST2-ligand, IL-33, primarily promotes an allergic phenotype. Human basophils, major players in allergic inflammation, constitutively express IL-18 receptors, while ST2 surface expression is inducible by IL-3. Unexpectedly, freshly isolated basophils are strongly activated by IL-33, but, in contrast to mouse basophils, do not respond to IL-18. IL-33 promotes IL-4, IL-13 and IL-8 secretion in synergy with IL-3 and/or FcepsilonRI-activation, and enhances FcepsilonRI-induced mediator release. These effects are similar to that of IL-3, but the signaling pathways engaged are distinct because IL-33 strongly activates NF-kappaB and shows a preference for p38 MAP-kinase, while IL-3 acts through Jak/Stat and preferentially activates ERK. Eosinophils are the only other leukocyte-type directly activated by IL-33, as evidenced by screening of p38-activation in peripheral blood cells. Only upon CD3/CD28-ligation, IL-33 weakly enhances Th2 cytokine expression by in vivo polarized Th2 cells. This study on primary human cells demonstrates that basophils and eosinophils are the only direct target leukocytes for IL-33, suggesting that IL-33 promotes allergic inflammation and Th2 polarization mainly by the selective activation of these specialized cells of the innate immune system.
Project description:Cadherins, a multigene family of transmembrane glycoproteins, mediate Ca(2+)-dependent intercellular adhesion. They are thought to be essential for the control of morphogenetic processes, including myogenesis. Here we report the identification and characterization of the cDNA of another member of the cadherin family, M-cadherin (M for muscle), from differentiating muscle cells. The longest open reading frame of the cDNAs isolated contains almost the entire coding region of the mature M-cadherin as determined by sequence homology to the known cadherins. M-cadherin mRNA is present at low levels in myoblasts and is upregulated in myotube-forming cells. In mouse L cells (fibroblasts), M-cadherin mRNA is undetectable. This expression pattern indicates that M-cadherin is part of the myogenic program and may provide a trigger for terminal muscle differentiation.
Project description:We investigated reciprocal interactions between cocultures of isolated populations of eosinophils and ILC2s and found these cells promote changes in gene expression as compared to being cultured alone.
Project description:Purple acid phosphatases (PAPs) play various physiological roles in plants. AtPAP2 was previously shown to localize to both chloroplasts and mitochondria and to modulate carbon metabolism in Arabidopsis. Over-expression of AtPAP2 resulted in faster growth and increased biomass in several plant species, indicating its great potential for crop improvement of phosphate use and yield. Here, we studied the localization of AtPAP2 by transient expression in tobacco leaves. The results showed AtPAP2 was localized to the plasma membrane through the secretory pathway, which is different from previous studies. We also found that AtPAP2 had a close relationship with fungal PAP2-like proteins based on phylogenetic analysis. In addition, the C-terminal transmembrane domain conserved in land plants is unique among other AtPAPs except AtPAP9, which is a close homolog of AtPAP2. Taken together, our results provide information for further study of AtPAP2 in understanding its special function in crop improvement.