Project description:The interaction of menin (MEN1) and MLL (MLL1, KMT2A) is a dependency and provides a potential opportunity for treatment of NPM1-mutant (NPM1mut) and MLL-rearranged (MLL-r) leukemias. Concomitant activating driver mutations in the gene encoding the tyrosine kinase FLT3 occur in both leukemias and are particularly common in the NPM1mut subtype. In this study, transcriptional profiling after pharmacological inhibition of the menin-MLL complex revealed specific changes in gene expression, with downregulation of the MEIS1 transcription factor and its transcriptional target gene FLT3 being the most pronounced. Combining menin-MLL inhibition with specific small-molecule kinase inhibitors of FLT3 phosphorylation resulted in a significantly superior reduction of phosphorylated FLT3 and transcriptional suppression of genes downstream of FLT3 signaling. The drug combination induced synergistic inhibition of proliferation, as well as enhanced apoptosis, compared with single-drug treatment in models of human and murine NPM1mut and MLL-r leukemias harboring an FLT3 mutation. Primary acute myeloid leukemia (AML) cells harvested from patients with NPM1mutFLT3mut AML showed significantly better responses to combined menin and FLT3 inhibition than to single-drug or vehicle control treatment, whereas AML cells with wild-type NPM1, MLL, and FLT3 were not affected by either of the 2 drugs. In vivo treatment of leukemic animals with MLL-r FLT3mut leukemia reduced leukemia burden significantly and prolonged survival compared with results in the single-drug and vehicle control groups. Our data suggest that combined menin-MLL and FLT3 inhibition represents a novel and promising therapeutic strategy for patients with NPM1mut or MLL-r leukemia and concurrent FLT3 mutation.
Project description:The interaction of Menin (MEN1) and MLL (MLL1, KMT2A) is a dependency and potential therapeutic opportunity against NPM1 mutant (NPM1mut) and MLL-rearranged (MLL-r) leukemias. Concomitant activating driver mutations in the gene encoding the tyrosine kinase FLT3 occur in both leukemias and are particularly common in the NPM1mut subtype. Transcriptional profiling upon pharmacological inhibition of the Menin-MLL complex revealed specific changes in gene expression with downregulation of the MEIS1 transcription factor and its transcriptional target gene FLT3 being most pronounced. Combining Menin-MLL inhibition with specific small molecule kinase inhibitors of FLT3 phosphorylation resulted in a significantly superior reduction of phosphorylated FLT3 and transcriptional suppression of genes downstream to FLT3 signaling. The drug combination induced synergistic inhibition of proliferation as well as enhanced apoptosis and differentiation compared to single-drug treatment in models of human and murine NPM1mut and MLL-r leukemias harboring an FLT3 mutation. Primary AML cells harvested from patients with NPM1mut FLT3mut AML showed significantly better responses to combined Menin and FLT3 inhibition than to single-drug or vehicle control treatment, while AML cells with wildtype NPM1, MLL, and FLT3 were not affected by any of the two drugs. In vivo treatment of leukemic animals with MLL-r FLT3mut leukemia reduced leukemia burden significantly and prolonged survival compared to the single-drug and vehicle control groups. Our data suggest that combined Menin-MLL and FLT3 inhibition represents a novel and promising therapeutic strategy for patients with NPM1mut or MLL-r leukemia and concurrent FLT3 mutation.
Project description:The protein-protein interaction between menin and mixed lineage leukemia 1 (MLL1) plays a critical role in acute leukemias with translocations of the MLL1 gene or with mutations in the nucleophosmin 1 (NPM1) gene. As a step toward clinical translation of menin-MLL1 inhibitors, we report development of MI-3454, a highly potent and orally bioavailable inhibitor of the menin-MLL1 interaction. MI-3454 profoundly inhibited proliferation and induced differentiation in acute leukemia cells and primary patient samples with MLL1 translocations or NPM1 mutations. When applied as a single agent, MI-3454 induced complete remission or regression of leukemia in mouse models of MLL1-rearranged or NPM1-mutated leukemia, including patient-derived xenograft models, through downregulation of key genes involved in leukemogenesis. We also identified MEIS1 as a potential pharmacodynamic biomarker of treatment response with MI-3454 in leukemia, and demonstrated that this compound is well tolerated and did not impair normal hematopoiesis in mice. Overall, this study demonstrates, for the first time to our knowledge, profound activity of the menin-MLL1 inhibitor as a single agent in clinically relevant PDX models of leukemia. These data provide a strong rationale for clinical translation of MI-3454 or its analogs for leukemia patients with MLL1 rearrangements or NPM1 mutations.
Project description:Acute myeloid leukemia (AML) with mutated NPM1 accounts for one-third of newly diagnosed AML. Despite recent advances, treatment of relapsed/refractory NPM1-mutated AML remains challenging, with the majority of patients eventually dying due to disease progression. Moreover, the prognosis is particularly poor in elderly and unfit patients, mainly because they cannot receive intensive treatment. Therefore, alternative treatment strategies are needed. Dactinomycin is a low-cost chemotherapeutic agent, which has been anecdotally reported to induce remission in NPM1-mutated patients, although its mechanism of action remains unclear. Here, we describe the results of a single-center phase 2 pilot study investigating the safety and efficacy of single-agent dactinomycin in relapsed/refractory NPM1-mutated adult AML patients, demonstrating that this drug can induce complete responses and is relatively well tolerated. We also provide evidence that the activity of dactinomycin associates with nucleolar stress both in vitro and in vivo in patients. Finally, we show that low-dose dactinomycin generates more efficient stress response in cells expressing NPM1 mutant compared to wild-type cells, suggesting that NPM1-mutated AML may be more sensitive to nucleolar stress. In conclusion, we establish that dactinomycin is a potential therapeutic alternative in relapsed/refractory NPM1-mutated AML that deserves further investigation in larger clinical studies.
Project description:AML patients under the age of 60 whose blasts harbor a FLT3 internal tandem duplication (ITD) mutation have a higher relapse rate and inferior survival compared to those without this mutation. To determine if FLT3ITD also carries a negative prognostic impact in older adults receiving therapies commonly used in this age group, we retrospectively analyzed outcomes of patients ?60 years with CN-AML according to FLT3 mutation status. We identified 91 newly diagnosed CN-AML patients, 55 with wild-type FLT3 and 36 with FLT3ITD. Of the 91 patients, 36 received supportive care and/or experimental therapies while the remaining 55 received induction chemotherapy, followed by allogeneic SCT in 17 of these patients. Based on univariate analysis, advanced age at diagnosis was significantly associated with shorter overall survival (OS) (p<.0001) while intensive therapies were associated with improved OS (p<.0001). In a multivariate analysis that accounted for type of treatment, patient age, gender, and WBC count, FLT3ITD was significantly associated with shorter OS compared to wtFLT3 [p=.001; hazard ratio (HR)=2.23; 95% CI: 1.35-3.70]. Our data support the negative prognostic impact of FLT3ITD in older adults with CN-AML.
Project description:Genomic investigations of acute myeloid leukemia (AML) have demonstrated that several genes are recurrently mutated, leading to new genomic classifications, predictive biomarkers, and new therapeutic targets. Mutations of the FMS-like tyrosine kinase 3 (FLT3) gene occur in approximately 30% of all AML cases, with the internal tandem duplication (ITD) representing the most common type of FLT3 mutation (FLT3-ITD; approximately 25% of all AML cases). FLT3-ITD is a common driver mutation that presents with a high leukemic burden and confers a poor prognosis in patients with AML. The prognostic value of a FLT3 mutation in the tyrosine kinase domain (FLT3-TKD), which has a lower incidence in AML (approximately 7-10% of all cases), is uncertain. Accumulating evidence demonstrates that FLT3 mutational status evolves throughout the disease continuum. This so-called clonal evolution, together with the identification of FLT3-ITD as a negative prognostic marker, serves to highlight the importance of FLT3-ITD testing at diagnosis and again at relapse. Earlier identification of FLT3 mutations will help provide a better understanding of the patient's disease and enable targeted treatment that may help patients achieve longer and more durable remissions. First-generation FLT3 inhibitors developed for clinical use are broad-spectrum, multikinase inhibitors; however, next-generation FLT3 inhibitors are more specific, more potent, and have fewer toxicities associated with off-target effects. Primary and secondary acquired resistance to FLT3 inhibitors remains a challenge and provides a rationale for combining FLT3 inhibitors with other therapies, both conventional and investigational. This review focuses on the pathological and prognostic role of FLT3 mutations in AML, clinical classification of the disease, recent progress with next-generation FLT3 inhibitors, and mechanisms of resistance to FLT3 inhibitors.
Project description:Tyrosine kinase domain (TKD) mutations contribute to acquired resistance to FMS-like tyrosine kinase 3 (FLT3) inhibitors used to treat FLT3-mutant acute myeloid leukemia (AML). We report a cocrystal structure of FLT3 with a type I inhibitor, NCGC1481, that retained potent binding and activity against FLT3 TKD and gatekeeper mutations. Relative to the current generation of advanced FLT3 inhibitors, NCGC1481 exhibited superior antileukemic activity against the common, clinically relevant FLT3-mutant AML cells in vitro and in vivo.
Project description:Clustered regularly interspaced palindromic repeats (CRISPR) with the associated (Cas) nuclease complexes have democratized genetic engineering through their precision and ease-of-use. We have applied a variation of this technology, known as CRISPR-directed mutagenesis (CDM), to reconstruct genetic profiles within the FLT3 gene of AML patients. We took advantage of the versatility of CDM and built expression vectors that, in combination with a specifically designed donor DNA fragment, recapitulate simple and complex mutations within the FLT3 gene. We generate insertions and point mutations including combinations of these mutations originating from individual patient samples. We then analyze how these complex genetic profiles modulate transformation of Ba/F3 cells. Our results show that FLT3 expression plasmids bearing patient-specific single or multiple mutations recapitulate cellular transformation properties induced by FLT3 ITDs and modify their sensitivity or resistance in response to established AML drugs as a function of these complex mutations.
Project description:FLT3 has been identified as a valid target for the treatment of acute myeloid leukemia (AML), and some FLT3 inhibitors have shown very good efficacy in treating AML in clinical trials. Nevertheless, recent studies indicated that relapse and drug resistance are still difficult to avoid, and leukemia stem cells (LSCs) are considered one of the most important contributors. Here, we report the characterization of SKLB-677, a new FLT3 inhibitor developed by us recently. SKLB-677 exhibits low nanomolar potency in biochemical and cellular assays. It is efficacious in animal models at doses as low as 1mg/kg when administrated orally once daily. In particular, SKLB-677 but not first-generation and second-generation FLT3 inhibitors in clinical trials has the ability to inhibit Wnt/?-catenin signaling; Wnt/?-catenin signaling is required for the development of LSCs, but not necessary for the development of adult hematopoietic stem cells (HSCs). This compound indeed showed considerable suppression effects on leukemia stem-like cells in in vitro functional assays, but had no influence on normal HSCs. Collectively, SKLB-677 is an interesting lead compound for the treatment of AML, and deserves further investigations.