Unknown

Dataset Information

0

Epigenetic alternations of microRNAs and DNA methylation contribute to gestational diabetes mellitus.


ABSTRACT: This study aimed to identify epigenetic alternations of microRNAs and DNA methylation for gestational diabetes mellitus (GDM) diagnosis and treatment using in silico approach. Data of mRNA and miRNA expression microarray (GSE103552 and GSE104297) and DNA methylation data set (GSE106099) were obtained from the GEO database. Differentially expressed genes (DEGs), differentially expressed miRNAs (DEMs) and differentially methylated genes (DMGs) were obtained by limma package. Functional and enrichment analyses were performed with the DAVID database. The protein-protein interaction (PPI) network was constructed by STRING and visualized in Cytoscape. Simultaneously, a connectivity map (CMap) analysis was performed to screen potential therapeutic agents for GDM. In GDM, 184 low miRNA-targeting up-regulated genes and 234 high miRNA-targeting down-regulated genes as well as 364 hypomethylation-high-expressed genes and 541 hypermethylation-low-expressed genes were obtained. They were mainly enriched in terms of axon guidance, purine metabolism, focal adhesion and proteasome, respectively. In addition, 115 genes (67 up-regulated and 48 down-regulated) were regulated by both aberrant alternations of miRNAs and DNA methylation. Ten chemicals were identified as putative therapeutic agents for GDM and four hub genes (IGF1R, ATG7, DICER1 and RANBP2) were found in PPI and may be associated with GDM. Overall, this study identified a series of differentially expressed genes that are associated with epigenetic alternations of miRNA and DNA methylation in GDM. Ten chemicals and four hub genes may be further explored as potential drugs and targets for GDM diagnosis and treatment, respectively.

SUBMITTER: Zhu W 

PROVIDER: S-EPMC7753873 | biostudies-literature | 2020 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Epigenetic alternations of microRNAs and DNA methylation contribute to gestational diabetes mellitus.

Zhu Weiqiang W   Shen Yupei Y   Liu Junwei J   Fei Xiaoping X   Zhang Zhaofeng Z   Li Min M   Chen Xiaohong X   Xu Jianhua J   Zhu Qianxi Q   Zhou Weijin W   Zhang Meihua M   Liu Shangqing S   Du Jing J  

Journal of cellular and molecular medicine 20201021 23


This study aimed to identify epigenetic alternations of microRNAs and DNA methylation for gestational diabetes mellitus (GDM) diagnosis and treatment using in silico approach. Data of mRNA and miRNA expression microarray (GSE103552 and GSE104297) and DNA methylation data set (GSE106099) were obtained from the GEO database. Differentially expressed genes (DEGs), differentially expressed miRNAs (DEMs) and differentially methylated genes (DMGs) were obtained by limma package. Functional and enrichm  ...[more]

Similar Datasets

| PRJEB66494 | ENA
| S-EPMC5368916 | biostudies-literature
| S-EPMC9665131 | biostudies-literature
| S-EPMC8257864 | biostudies-literature
| S-EPMC3609586 | biostudies-literature
| S-EPMC5924999 | biostudies-other
| S-EPMC8371577 | biostudies-literature
2021-06-23 | GSE122086 | GEO
2017-03-29 | GSE88929 | GEO
| S-EPMC7984613 | biostudies-literature