Unknown

Dataset Information

0

Coherent suppression of backscattering in optical microresonators.


ABSTRACT: As light propagates along a waveguide, a fraction of the field can be reflected by Rayleigh scatterers. In high-quality-factor whispering-gallery-mode microresonators, this intrinsic backscattering is primarily caused by either surface or bulk material imperfections. For several types of microresonator-based experiments and applications, minimal backscattering in the cavity is of critical importance, and thus, the ability to suppress backscattering is essential. We demonstrate that the introduction of an additional scatterer into the near field of a high-quality-factor microresonator can coherently suppress the amount of backscattering in the microresonator by more than 30?dB. The method relies on controlling the scatterer position such that the intrinsic and scatterer-induced backpropagating fields destructively interfere. This technique is useful in microresonator applications where backscattering is currently limiting the performance of devices, such as ring-laser gyroscopes and dual frequency combs, which both suffer from injection locking. Moreover, these findings are of interest for integrated photonic circuits in which back reflections could negatively impact the stability of laser sources or other components.

SUBMITTER: Svela AO 

PROVIDER: S-EPMC7755905 | biostudies-literature | 2020 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Coherent suppression of backscattering in optical microresonators.

Svela Andreas Ø AØ   Silver Jonathan M JM   Del Bino Leonardo L   Zhang Shuangyou S   Woodley Michael T M MTM   Vanner Michael R MR   Del'Haye Pascal P  

Light, science & applications 20201223 1


As light propagates along a waveguide, a fraction of the field can be reflected by Rayleigh scatterers. In high-quality-factor whispering-gallery-mode microresonators, this intrinsic backscattering is primarily caused by either surface or bulk material imperfections. For several types of microresonator-based experiments and applications, minimal backscattering in the cavity is of critical importance, and thus, the ability to suppress backscattering is essential. We demonstrate that the introduct  ...[more]

Similar Datasets

| S-EPMC7758338 | biostudies-literature
| S-EPMC6304008 | biostudies-literature
| S-EPMC7224298 | biostudies-literature
| S-EPMC5622060 | biostudies-literature
| S-EPMC9376110 | biostudies-literature
| S-EPMC10066214 | biostudies-literature
| S-EPMC4248266 | biostudies-literature
| S-EPMC7801488 | biostudies-literature
| S-EPMC10439148 | biostudies-literature
| S-EPMC3562444 | biostudies-literature