Project description:Cytomegalovirus (CMV) represents one of the most common infectious complications after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Currently, a common diagnostic test used to stratify the risk for CMV infection in allo-HSCT recipients is the qualitative CMV serology of donor and recipient. A positive serostatus of the recipient is the most important risk factor for CMV reactivation and associated with reduced overall survival post-transplantation (TX). Direct and indirect effects of CMV are involved in the poorer survival outcome. The present study investigated if the quantitative interpretation of anti-CMV IgG before allo-HSCT might serve as a novel parameter for the identification of patients at risk for CMV reactivation and worse outcome post-TX. For this purpose, a cohort of 440 allo-HSCT recipients over a period of 10 years was retrospectively analyzed. Our findings indicated that patients with high CMV IgG pre-allo-HSCT had a higher risk to develop CMV reactivation, including clinically relevant infections, and a worse prognosis 36 months post-allo-HSCT as compared to recipients with low CMV IgG values. In the letermovir (LMV) era, this group of patients might benefit from a closer CMV monitoring, and hence, earlier intervention if needed, especially after discontinuation of prophylaxis.
Project description:BackgroundBased on sequence variation in the UL55 gene that encodes glycoprotein B (gB), human cytomegalovirus (CMV) can be classified into four gB genotypes. Previous studies have suggested an association between CMV gB genotype and clinical outcome in patients who underwent an allogeneic hematopoietic stem cell transplant (HSCT). The goals of this study were identify patients with active infection caused by CMV in recipients of HSCT; determine the prevalence of CMV genotypes in the study group; correlate genotype with CMV disease, acute GVHD and overall survival.MethodsThe diagnosis of active CMV infection after allogeneic HSCT was detected by antigenemia (AGM) and/or nested-PCR (N-PCR). Positive samples from patients with active CMV infection were submitted to genotyping using N-PCR to amplify a region of UL55, followed by restriction analysis based on HinfI and RsaI digestion. Real-time PCR (qPCR) was used to determine the viral load during active CMV infection and antiviral treatment.ResultsSixty-three allogeneic HSCT recipients were prospectively evaluated; 49/63 (78%) patients were infected with CMV genotypes - gB1 19/49 (39%), gB2 17/49 (35%), gB3 3/49 (6%), gB4 7/49 (14%) - and 3 (6%) had mixed CMV genotypes (gB1 + gB3, gB1 + gB4 and gB2 + gB4). Characterized by gastrointestinal disease, CMV disease occurred in 3/49 (6.1%) patients, who had CMV gB3 genotype. These gB3 genotype patients presented an increasing AGM number, mean 125 (± 250) (P = 0.70), and qPCR copies/ml, mean 37938 (SD ± 50542) (P = 0.03), during antiviral treatment, when compared with other CMV genotypes. According to CMV genotypes, stratified overall survival was 55% for gB1, 43% for gB2; 0% for gB3 and 57% for gB4 (P = 0.03).ConclusionsOne of the restrictions of the presented study was the low number of CMV gB sub-cohorts). However, we demonstrated that the frequency of active CMV infection in this HSCT population was high, and the most prevalent genotype in these patients with active CMV infection was gB1 and gB2 genotype (74%). In Brazil, HSCT recipients seem to carry mainly gB1 and gB2 CMV genotype.
Project description:Cytomegalovirus (CMV) remains a major contributor to morbidity and mortality following allogeneic haemopoietic stem cell transplant (HSCT) despite widespread use of viraemia monitoring and pre-emptive antiviral therapy. Uncontrolled viral replication occurs primarily in the first 100 d post transplant but this high risk period can extend to many months if immune recovery is delayed. The re-establishment of a functional population of cellular effectors is essential for control of virus replication and depends on recipient and donor serostatus, the stem cell source, degree of HLA matching and post-transplant factors such as CMV antigen exposure, presence of GVHD and ongoing use of immune suppression. A number of immune monitoring assays exist but have not yet become widely accessible for routine clinical use. Vaccination, adoptive transfer of CMV specific T cells and a number of graft engineering processes are being evaluated to enhance of CMV specific immune recovery post HSCT.
Project description:Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative procedure for a large number of diseases. However, the greatest barriers to the success of allo-HCT are relapse and graft-versus-host-disease (GVHD). Many studies have examined the reconstitution of the immune system after allo-HCT and searched for factors associated with clinical outcome. Serum biomarkers have also been studied to predict the incidence and prognosis of GVHD. However, the use of multiparametric immunophenotyping has been less extensively explored: studies usually focus on preselected and predefined cell phenotypes and so do not fully exploit the richness of flow cytometry data. Here we aimed to identify cell phenotypes present 30 days after allo-HCT that are associated with clinical outcomes in 37 patients participating in a trial relating to the prevention of GVHD, derived from 82 flow cytometry markers and 13 clinical variables. To do this we applied variable selection methods in a competing risks modeling framework, and identified specific subsets of T, B, and NK cells associated with relapse. Our study demonstrates the value of variable selection methods for mining rich, high dimensional clinical data and identifying potentially unexplored cell subpopulations of interest.
Project description:BackgroundCytomegalovirus (CMV) infection remains an important cause of morbidity and mortality in allogeneic hematopoietic cell transplant (allo-HCT) recipients. CMV cell-mediated immunity (CMV-CMI) as determined by a peptide-based enzyme-linked immunospot (ELISPOT) CMV assay may identify patients at risk for clinically significant CMV infection (CS-CMVi).MethodsThe CS-CMVi was defined as CMV viremia and/or disease necessitating antiviral therapy. CMV-CMI was characterized as high when the intermediate-early 1 (IE-1) antigen spot counts (SPCs) were >100 (cutoff 1) or when the IE-1 and phosphoprotein 65 antigen SPCs were both >100 SPCs per 250 000 cells (cutoff 2), and a low CMV-CMI when SPCs were below these thresholds. In this prospective multicenter study, we evaluated CMV-CMI every 2 weeks from the pretransplant period until 6 months posttransplantation in 241 allo-HCT recipients with positive CMV serostatus. The primary endpoint was CS-CMVi occurring within 2 weeks of the last measurement of CMV-CMI.ResultsCS-CMVi occurred in 70 allo-HCT recipients (29%). CMV-CMI was low in patients who experienced CS-CMVi (94%), whereas those who had a high CMV-CMI were less likely to have CS-CMVi (P < .0001). Patients with CS-CMVi had higher all-cause mortality (P = .007), especially those with low CMV-CMI (P = .035). On multivariable analysis, CMV-CMI, sex, race, antithymocyte globulin, and steroid use were independent predictors of CS-CMVi, and the time from transplant to engraftment was the only predictor of mortality.ConclusionsMeasurement of CMV-CMI using a novel ELISPOT assay would be useful clinically to monitor allo-HCT recipients and distinguish between those at risk of developing CS-CMVi and requiring antiviral prophylaxis or therapy and those who are protected.
Project description:Gut dysbiosis has been associated with worse allogeneic hematopoietic cell transplantation (allo-HCT) outcomes. We reported an association between intrinsically vancomycin-resistant enterococci (iVRE: E. gallinarum and E. casseliflavus) gut colonization and lower post-transplant mortality. In this study, using an expanded cohort, we evaluated whether our previously observed association is species-specific. We included allo-HCT recipients with ≥1 positive rectal swab or stool culture for iVRE between days -14 and +14 of transplant. To investigate whether iVRE modulate the gut microbiota, we performed agar diffusion assays. To investigate whether iVRE differ in their ability to activate the aryl hydrocarbon receptor, we analyzed iVRE genomes for enzymes in the shikimate and tryptophan pathways. Sixty six (23 E. casseliflavus and 43 E. gallinarum) of the 908 allograft recipients (2011-2017) met our inclusion criteria. Overall survival was significantly higher in patients with E. casseliflavus (91% vs. 62% at 3 years, P = 0.04). In multivariable analysis, E. casseliflavus gut colonization was significantly associated with reduced all-cause mortality (hazard ratio 0.20, 95% confidence interval 0.04-0.91, P = 0.04). While agar assays were largely unremarkable, genome mining predicted that E. casseliflavus encodes a larger number of enzymes in the tryptophan metabolism pathway. In conclusion, E. casseliflavus gut colonization is associated with reduced post-HCT morality. Further research is needed to understand the mechanisms for this association.
Project description:BackgroundIn a phase 3 trial, letermovir reduced clinically significant cytomegalovirus infections (CS-CMVi) and all-cause mortality at week 24 versus placebo in CMV-seropositive allogeneic hematopoietic cell transplantation (HCT) recipients. This post hoc analysis of phase 3 data further investigated the effects of letermovir on all-cause mortality.MethodsKaplan-Meier survival curves were generated by treatment group for all-cause mortality. Observations were censored at trial discontinuation for reasons other than death or at trial completion. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated using Cox modeling, adjusting for risk factors associated with mortality.ResultsOf 495 patients with no detectable CMV DNA at randomization, 437 had vital-status data available through week 48 post-HCT at trial completion (101 deaths, 20.4%). Following letermovir prophylaxis, the HR for all-cause mortality was 0.58 (95% CI, 0.35-0.98; P = .04) at week 24 and 0.74 (95% CI, 0.49-1.11; P = .14) at week 48 post-HCT versus placebo. Incidence of all-cause mortality through week 48 post-HCT in the letermovir group was similar in patients with or without CS-CMVi (15.8 vs 19.4%; P = .71). However, in the placebo group, all-cause mortality at week 48 post-HCT was higher in patients with versus those without CS-CMVi (31.0% vs 18.2%; P = .02). The HR for all-cause mortality in patients with CS-CMVi was 0.45 (95% CI, 0.21-1.00; P = .05) at week 48 for letermovir versus placebo.ConclusionsLetermovir may reduce mortality by preventing or delaying CS-CMVi in HCT recipients.Clinical trials registrationclinicaltrials.gov, NCT02137772.
Project description:Factors predicting allogeneic hematopoietic cell transplantation (HCT) outcomes in myelofibrosis in the early post-HCT period have not been defined thus far. We attempt to study such factors that can help identify patients at a higher risk of relapse or death. This retrospective study included 79 patients who underwent first HCT for myelofibrosis at three centers between 2005 and 2016. Univariate analysis showed that red blood cell (RBC) transfusion dependence (HR 9.02, 95% CI 4.0-20.35), platelet transfusion dependence (HR 8.17, 95%CI 3.83-17.37), 100% donor chimerism in CD33 + cells (HR 0.21, 95%CI 0.07-0.62), unfavorable molecular status (HR 4.41, 95%CI 1.87-10.39), normal spleen size (HR 0.42, 95%CI 0.19-0.94), grade ≥ 2 bone marrow fibrosis (vs. grade ≤ 1; HR 2.7, 95%CI 1.1-6.93) and poor graft function (HR 2.6, 95%CI 1.22-5.53) at day +100 were statistically significantly associated with relapse-free survival (RFS). RBC transfusion dependence and unfavorable molecular status were also statistically significant in the multivariate analysis. Patients in whom both of these factors were present had a significantly worse RFS when compared to those with one or none. While limited by a small sample size, we demonstrate the significance of transfusion dependence and molecular status at day +100 in predicting outcomes.
Project description:Biologic markers of immune tolerance may facilitate tailoring of immune suppression duration after allogeneic hematopoietic cell transplantation (HCT). In a cross-sectional study, peripheral blood samples were obtained from tolerant (n = 15, median 38.5 months post-HCT) and non-tolerant (n = 17, median 39.5 post-HCT) HCT recipients and healthy control subjects (n = 10) for analysis of immune cell subsets and differential gene expression. There were no significant differences in immune subsets across groups. We identified 281 probe sets unique to the tolerant (TOL) group and 122 for non-tolerant (non-TOL). These were enriched for process networks including NK cell cytotoxicity, antigen presentation, lymphocyte proliferation, and cell cycle and apoptosis. Differential gene expression was enriched for CD56, CD66, and CD14 human lineage-specific gene expression. Differential expression of 20 probe sets between groups was sufficient to develop a classifier with > 90% accuracy, correctly classifying 14/15 TOL cases and 15/17 non-TOL cases. These data suggest that differential gene expression can be utilized to accurately classify tolerant patients following HCT. Prospective investigation of immune tolerance biologic markers is warranted.
Project description:We examined the impact of total body irradiation (TBI) dose and fractionation on risk of subsequent malignant neoplasms (SMNs) in the era of reduced-intensity and nonmyeloablative conditioning regimens for hematopoietic cell transplantation (HCT). Among 4905 1-year survivors of allogeneic HCT for hematologic malignancies (N = 4500) or nonmalignant disorders (N = 405) who received transplants between 1969 and 2014, we identified 581 SMNs (excluding squamous and basal cell of skin) in 499 individuals. With a median length of follow-up of 12.5 years, the cumulative incidence of SMNs by 30 years after HCT was 22.0%. Compared with age-, sex-, and calendar year-matched Surveillance, Epidemiology, and End Results (SEER) population rates, the standardized incidence ratio (SIR) of SMNs was increased 2.8-fold. The highest SIRs were for SMNs of bones (SIR, 28.8), oral cavity (SIR, 13.8), skin (SIR, 7.3), central nervous system (SIR, 6.0), and endocrine organs (SIR, 4.9). The highest excess absolute risks (EARs) were seen with breast cancer (EAR, 2.2) and cancers of the oral cavity (EAR, 1.5) and skin (EAR, 1.5) per 1000 person-years. The highest incidence of SMNs was in survivors exposed to unfractionated (600-1000 cGy) or high-dose fractionated (1440-1750 cGy) TBI. For patients receiving low-dose TBI, the incidence was comparable to myeloablative chemotherapy alone, although still twofold higher than in the general population. These data demonstrate a strong effect of TBI dose, dose fractionation, and risk of SMNs after HCT. The cumulative incidence of SMNs increases with follow-up time; thus, HCT survivors require lifetime monitoring for early detection and effective therapy of SMNs.