ABSTRACT: The negligible water solubility of tetracycline (TC), a well-known antibiotic of clinical use, is the major disadvantage for its oral administration. With the aim to improve the water solubility of TC, the micelles of formulae SLS@TC and CTAB@TC (SLS = sodium lauryl sulphate and CTAB = cetrimonium bromide) were synthesized. The micelles SLS@TC and CTAB@TC were characterized by melting point (m.p.), thermogravimetric differential thermal analysis (TG-DTA), differential scanning calorimetry (DTG/DSC), attenuated total reflection spectroscopy (FT-IR-ATR), ultra-violet visible (UV/vis) spectroscopy, proton nucleus magnetic resonance (1H-NMR) spectroscopy, and the ultrasonically-induced biregringence technique. The antimicrobial activity of SLS@TC and CTAB@TC was evaluated, by means of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and inhibition zone (IZ), against the Gram negative bacterial strains Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli) and the Gram positive ones of the genus of Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus). Generally, both micelles show better activity than that of TC against the microbial strains tested. Thus, the MIC value of CTAB@TC is 550-fold higher than that of free TC against S. epidermidis. Despite the stronger activity of CTAB@TC than SLS@TC against both Gram negative and Gram positive microbes, SLS@TC is classified as a bactericidal agent (in that it eliminates 99.9% of the microbes), in contrast to CTAB@TC, which is bacteriostatic one (inhibits, but does not kill the organisms). The toxicity of SLS@TC and CTAB@TC was evaluated against human corneal eukaryotic cells (HCECs). Moreover, SLS@TC and CTAB@TC exhibit low in vivo toxicity against Artemia salina, even at concentrations up to threefold higher than those of their MICmax. Therefore, SLS@TC and CTAB@TC can be candidates for the development of new antibiotics.