Unknown

Dataset Information

0

Preparations of Tough and Conductive PAMPS/PAA Double Network Hydrogels Containing Cellulose Nanofibers and Polypyrroles.


ABSTRACT: To afford an intact double network (sample abbr.: DN) hydrogel, two-step crosslinking reactions of poly(2-acrylamido-2-methylpropanesulfonic acid) (i.e., PAMPS first network) and then poly(acrylic acid) (i.e., PAA second network) were conducted both in the presence of crosslinker (N,N'-methylenebisacrylamide (MBAA)). Similar to the two-step processes, different contents of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) oxidized cellulose nanofibers (TOCN: 1, 2, and 3 wt.%) were initially dispersed in the first network solutions and then crosslinked. The TOCN-containing PAMPS first networks subsequently soaked in AA and crosslinker and conducted the second network crosslinking reactions (TOCN was then abbreviated as T for DN samples). As the third step, various (T-)DN hydrogels were then treated with different concentrations of FeCl3(aq) solutions (5, 50, 100, and 200 mM). Through incorporations of ferric ions into (T-)DN hydrogels, notably, three purposes are targeted: (i) strengthen the (T-)DN hydrogels through ionic bonding, (ii) significantly render ionic conductivity of hydrogels, and (iii) serve as a catalyst for the forth step to proceed with in situ chemical oxidative polymerizations of pyrroles to afford polypyrrole-containing (sample abbr.: Py) hydrogels [i.e., (T-)Py-DN samples]. The characteristic functional groups of PAMPS, PAA, and Py were confirmed by FT-IR. Uniform microstructures were observed by cryo scanning electron microscopy (cryo-SEM). These results indicated that homogeneous composites of T-Py-DN hydrogels were obtained through the four-step process. All dry samples showed similar thermal degradation behaviors from the thermogravimetric analysis (TGA). The T2-Py5-DN sample (i.e., containing 2 wt.% TOCN with 5 mM FeCl3(aq) treatment) showed the best tensile strength and strain at breaking properties (i.e., ?Tb = 450 kPa and ?Tb = 106%). With the same compositions, a high conductivity of 3.34 × 10-3 S/cm was acquired. The tough T2-Py5-DN hydrogel displayed good conductive reversibility during several "stretching-and-releasing" cycles of 50-100-0%, demonstrating a promising candidate for bioelectronic or biomaterial applications.

SUBMITTER: Tu CW 

PROVIDER: S-EPMC7760924 | biostudies-literature | 2020 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Preparations of Tough and Conductive PAMPS/PAA Double Network Hydrogels Containing Cellulose Nanofibers and Polypyrroles.

Tu Cheng-Wei CW   Tsai Fang-Chang FC   Chen Jem-Kun JK   Wang Huei-Ping HP   Lee Rong-Ho RH   Zhang Jiawei J   Chen Tao T   Wang Chung-Chi CC   Huang Chih-Feng CF  

Polymers 20201128 12


To afford an intact double network (sample abbr.: DN) hydrogel, two-step crosslinking reactions of poly(2-acrylamido-2-methylpropanesulfonic acid) (i.e., PAMPS first network) and then poly(acrylic acid) (i.e., PAA second network) were conducted both in the presence of crosslinker (<i>N</i>,<i>N</i>'-methylenebisacrylamide (MBAA)). Similar to the two-step processes, different contents of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) oxidized cellulose nanofibers (TOCN: 1, 2, and 3 wt.%) were initi  ...[more]

Similar Datasets

| S-EPMC5732198 | biostudies-literature
| S-EPMC6918434 | biostudies-literature
| S-EPMC8027177 | biostudies-literature
| S-EPMC7414159 | biostudies-literature
| S-EPMC6960870 | biostudies-literature
| S-EPMC7437955 | biostudies-literature
| S-EPMC10005511 | biostudies-literature
| S-EPMC3642868 | biostudies-literature
| S-EPMC8764582 | biostudies-literature
| S-EPMC5456156 | biostudies-other