The effect of brewery spent grain application on biogas yields and kinetics in co-digestion with sewage sludge.
Ontology highlight
ABSTRACT: The present study examines the effect of introducing dried brewery spent grain (BSG), known as the main solid by-product of the brewery industry on biogas yields and kinetics in co-digestion with sewage sludge (SS). The experiment was conducted in semi-continuous anaerobic reactors (supplied once a day) operating under mesophilic conditions (35°C) at different hydraulic retention times (HRT) of 18 and 20 d. In co-digestion runs, the BSG mass to the feed volume ratio was constant and maintained 1:10.The results indicated that the addition of BSG did not influence the biogas production, by comparison with SS mono-digestion (control run). At HRT of 18 d, in the co-digestion run, the average methane yield was 0.27 m3 kg/VSadded, while in the control run the higher value of 0.29 m3 kg/VSaddedwas observed. However, there was no difference in terms of statistical significance. At HRT of 20 d, the methane yield was 0.21 m3 kg/VSadded for both mono- and co-digestion runs. In the BSG presence, the decrease in kinetic constant values was observed. As compared to SS mono-digestion, reductions by 21 and 35% were found at HRT of 20 and 18 d, respectively. However, due to the supplementation of the feedstock with BSG rich in organic compounds, the significantly enhanced energy profits were achieved with the highest value of approx. 40% and related to the longer HRT of 20 d. Importantly, the mono- and co-digestion process proceeded in stable manner. Therefore, the anaerobic co-digestion of SS and BSG might be considered as a cost-effective solution that could contribute to the energy self-efficiency of wastewater treatment plants (WWTPs) and sustainable waste management for breweries.
SUBMITTER: Szaja A
PROVIDER: S-EPMC7761201 | biostudies-literature | 2020
REPOSITORIES: biostudies-literature
ACCESS DATA