The Effect of Photoperiod Genes and Flowering Time on Yield and Yield Stability in Durum Wheat.
Ontology highlight
ABSTRACT: This study analysed the effect of flowering time as influenced by photoperiod sensitivity genes on yield and yield stability in durum wheat. Twenty-three spring genotypes harbouring different allele combinations at Ppd-A1 and Ppd-B1 were grown in 15 field experiments at three sites at latitudes from 41° to 19° N (Spain, Mexico-North and Mexico-South). Low temperature and solar radiation before flowering and long day length during grain-filling characteristic for the Spanish site resulted in high grain number/m2 (GN) and yield (GY), while a moderate GN combined with high solar radiation during grain-filling at Mexico-North led to heavier grains. Allele combination GS100-Ppd-A1a/Ppd-B1a reduced the flowering time up to nine days when compared with Ppd-A1b/Ppd-B1a. Differences in flowering time caused by Ppd-A1/Ppd-B1 allele combinations did not affect yield. Combinations GS105-Ppd-A1a/Ppd-B1b and Ppd-A1b/Ppd-B1b resulted in the highest GN, linked to spikelets/spike, which was higher in GS105-Ppd-A1a/Ppd-B1b due to more grains/spikelet. Flowering time caused by Eps had a minor effect on GN, spikes/m2 and grains/spike, but late flowering resulted in reduced grain weight and GY. Allele combinations harbouring alleles conferring a similar photoperiod sensitivity response at Ppd-A1 and Ppd-B1 resulted in greater yield stability than combinations that carry alleles conferring a different response. Allele combination GS100-Ppd-A1a/Ppd-B1a was the most suitable in terms of yield and yield stability of durum wheat cultivated under irrigation within the studied latitudes.
SUBMITTER: Arjona JM
PROVIDER: S-EPMC7762236 | biostudies-literature | 2020 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA