Unknown

Dataset Information

0

A Physiologically-Based Pharmacokinetic (PBPK) Model Network for the Prediction of CYP1A2 and CYP2C19 Drug-Drug-Gene Interactions with Fluvoxamine, Omeprazole, S-mephenytoin, Moclobemide, Tizanidine, Mexiletine, Ethinylestradiol, and Caffeine.


ABSTRACT: Physiologically-based pharmacokinetic (PBPK) modeling is a well-recognized method for quantitatively predicting the effect of intrinsic/extrinsic factors on drug exposure. However, there are only few verified, freely accessible, modifiable, and comprehensive drug-drug interaction (DDI) PBPK models. We developed a qualified whole-body PBPK DDI network for cytochrome P450 (CYP) CYP2C19 and CYP1A2 interactions. Template PBPK models were developed for interactions between fluvoxamine, S-mephenytoin, moclobemide, omeprazole, mexiletine, tizanidine, and ethinylestradiol as the perpetrators or victims. Predicted concentration-time profiles accurately described a validation dataset, including data from patients with genetic polymorphisms, demonstrating that the models characterized the CYP2C19 and CYP1A2 network over the whole range of DDI studies investigated. The models are provided on GitHub (GitHub Inc., San Francisco, CA, USA), expanding the library of publicly available qualified whole-body PBPK models for DDI predictions, and they are thereby available to support potential recommendations for dose adaptations, support labeling, inform the design of clinical DDI trials, and potentially waive those.

SUBMITTER: Kanacher T 

PROVIDER: S-EPMC7764797 | biostudies-literature | 2020 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Physiologically-Based Pharmacokinetic (PBPK) Model Network for the Prediction of CYP1A2 and CYP2C19 Drug-Drug-Gene Interactions with Fluvoxamine, Omeprazole, S-mephenytoin, Moclobemide, Tizanidine, Mexiletine, Ethinylestradiol, and Caffeine.

Kanacher Tobias T   Lindauer Andreas A   Mezzalana Enrica E   Michon Ingrid I   Veau Celine C   Mantilla Jose David Gómez JDG   Nock Valerie V   Fleury Angèle A  

Pharmaceutics 20201208 12


Physiologically-based pharmacokinetic (PBPK) modeling is a well-recognized method for quantitatively predicting the effect of intrinsic/extrinsic factors on drug exposure. However, there are only few verified, freely accessible, modifiable, and comprehensive drug-drug interaction (DDI) PBPK models. We developed a qualified whole-body PBPK DDI network for cytochrome P450 (CYP) CYP2C19 and CYP1A2 interactions. Template PBPK models were developed for interactions between fluvoxamine, S-mephenytoin,  ...[more]

Similar Datasets

| S-EPMC6539736 | biostudies-literature
| S-EPMC5384691 | biostudies-literature
| S-EPMC3684819 | biostudies-literature
| S-EPMC5903239 | biostudies-literature
| S-EPMC3740059 | biostudies-literature
| S-EPMC8147656 | biostudies-literature
| S-EPMC9107402 | biostudies-literature
| S-EPMC6379114 | biostudies-literature
| S-EPMC4278879 | biostudies-literature
| S-EPMC10962466 | biostudies-literature