Chemical Basis of Floral Color Signals in Gesneriaceae: The Effect of Alternative Anthocyanin Pathways.
Ontology highlight
ABSTRACT: Changes in floral pigmentation can have dramatic effects on angiosperm evolution by making flowers either attractive or inconspicuous to different pollinator groups. Flower color largely depends on the type and abundance of pigments produced in the petals, but it is still unclear whether similar color signals rely on same biosynthetic pathways and to which extent the activation of certain pathways influences the course of floral color evolution. To address these questions, we investigated the physical and chemical aspects of floral color in the Neotropical Gesnerioideae (ca. 1,200 spp.), in which two types of anthocyanins, hydroxyanthocyanins, and deoxyanthocyanins, have been recorded as floral pigments. Using spectrophotometry, we measured flower reflectance for over 150 species representing different clades and pollination syndromes. We analyzed these reflectance data to estimate how the Gesnerioideae flowers are perceived by bees and hummingbirds using the visual system models of these pollinators. Floral anthocyanins were further identified using high performance liquid chromatography coupled to mass spectrometry. We found that orange/red floral colors in Gesnerioideae are produced either by deoxyanthocyanins (e.g., apigenidin, luteolinidin) or hydroxyanthocyanins (e.g., pelargonidin). The presence of deoxyanthocyanins in several lineages suggests that the activation of the deoxyanthocyanin pathway has evolved multiple times in the Gesnerioideae. The hydroxyanthocyanin-producing flowers span a wide range of colors, which enables them to be discriminated by hummingbirds or bees. By contrast, color diversity among the deoxyanthocyanin-producing species is lower and mainly represented at longer wavelengths, which is in line with the hue discrimination optima for hummingbirds. These results indicate that Gesnerioideae have evolved two different biochemical mechanisms to generate orange/red flowers, which is associated with hummingbird pollination. Our findings also suggest that the activation of the deoxyanthocyanin pathway has restricted flower color diversification to orange/red hues, supporting the potential constraining role of this alternative biosynthetic pathway on the evolutionary outcome of phenotypical and ecological diversification.
SUBMITTER: Ogutcen E
PROVIDER: S-EPMC7767864 | biostudies-literature | 2020
REPOSITORIES: biostudies-literature
ACCESS DATA