Unknown

Dataset Information

0

Targeting Low-Phytate Soybean Genotypes Without Compromising Desirable Phosphorus-Acquisition Traits.


ABSTRACT: Phytate-phosphorus (P) in food and feed is not efficiently utilized by humans and non-ruminant livestock, potentially contributing to high losses of P to the environment. Crops with high P-acquisition efficiency can access soil P effectively. It remains elusive whether crop genotypes with high P-acquisition efficiency can also have low seed phytate concentrations. A core collection of 256 soybean [Glycine max (L.) Merr.] genotypes from China with diverse genetic background were grown in the same environment and seeds were sampled to screen for seed phytate-P concentration. Some of these genotypes were also grown in a low-P soil in the glasshouse to measure root morphological and physiological traits related to P acquisition. Large genotypic variation was found in seed phytate-P concentration (0.69-5.49 mg P g-1 dry weight), total root length, root surface area, rhizosheath carboxylates, and acid phosphatase activity in rhizosheath soil. Geographically, seed phytate-P concentration was the highest for the genotypes from Hainan Province, whereas it was the lowest for the genotypes from Inner Mongolia. Seed phytate-P concentration showed no correlation with any desirable root traits associated with enhanced P acquisition. Two genotypes (Siliyuan and Diliuhuangdou-2) with both low phytate concentrations and highly desirable P-acquisition traits were identified. This is the first study to show that some soybean genotypes have extremely low seed phytate concentrations, combined with important root traits for efficient P acquisition, offering material for breeding genotypes with low seed phytate-P concentrations.

SUBMITTER: Kuerban M 

PROVIDER: S-EPMC7767974 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

Targeting Low-Phytate Soybean Genotypes Without Compromising Desirable Phosphorus-Acquisition Traits.

Kuerban Mireadili M   Jiao Wenfeng W   Pang Jiayin J   Jing Jingying J   Qiu Li-Juan LJ   Ding Wenli W   Cong Wen-Feng WF   Zhang Fusuo F   Lambers Hans H  

Frontiers in genetics 20201214


Phytate-phosphorus (P) in food and feed is not efficiently utilized by humans and non-ruminant livestock, potentially contributing to high losses of P to the environment. Crops with high P-acquisition efficiency can access soil P effectively. It remains elusive whether crop genotypes with high P-acquisition efficiency can also have low seed phytate concentrations. A core collection of 256 soybean [<i>Glycine max</i> (L.) Merr.] genotypes from China with diverse genetic background were grown in t  ...[more]

Similar Datasets

| S-EPMC9249851 | biostudies-literature
| S-EPMC6522583 | biostudies-literature
| S-EPMC9261192 | biostudies-literature
| S-EPMC8209930 | biostudies-literature
| S-EPMC7813827 | biostudies-literature
| S-EPMC6122521 | biostudies-literature
| S-EPMC8192852 | biostudies-literature
| S-EPMC4814561 | biostudies-literature
| S-EPMC8707277 | biostudies-literature
| S-EPMC5700946 | biostudies-literature