Project description:BackgroundDiabetic kidney disease (DKD) is a common disorder with multiple serious clinical implications, including an increased risk of end-stage kidney disease (ESKD), cardiovascular complications, heart failure, onset or worsening of hypertension, and premature death. Patients with DKD frequently require dialysis or kidney transplantation to manage their ESKD.SummaryUpregulation of the renin-angiotensin-aldosterone system is an important contributor to kidney disease progression, as highlighted by the results of trials evaluating angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in patients with albuminuria. Increasing evidence suggests the existence of a multidirectional network that involves aldosterone, the mineralocorticoid receptor (MR), and the Ras-related C3 botulinum toxin substrate 1 (Rac1) as driving forces in the generation of reactive oxygen species and oxidative stress-induced injury in the initiation of interstitial nephritis and eventual fibrosis in chronic kidney disease and DKD. The MR is a key element of this triangle, as highlighted by the beneficial effect of MR antagonists in preventing or reducing aldosterone- or Rac1-related effects in basic science studies, and the improved patient outcomes observed in clinical studies.Key messagesAldosterone can promote kidney disease in diabetes via the MR and via MR-independent actions through Rac1. However, the MR remains a key element of this triangle, with clinical data supporting the use of MR antagonists in delaying the progression of kidney disease in diabetes.
Project description:Diabetic kidney disease (DKD) is one of the major causes of end-stage renal disease (ESRD). To evaluate the efficacy and safety of different types of mineralocorticoid receptor antagonists (MRAs) in diabetic kidney disease patients, we conducted this network meta-analysis by performing a systematic search in PubMed, MEDLINE, EMBASE, Web of Science, the Cochrane Library, and Clinicaltrials.gov. A total of 12 randomized clinical trials with 15,492 patients applying various types of MRAs covering spironolactone, eplerenone, finerenone, esaxerenone, and apararenone were included. The efficacy outcomes were the ratio of urine albumin creatine ratio (UACR) at posttreatment vs. at baseline, change in posttreatment estimated glomerular filtration (eGFR) vs. at baseline, and change in posttreatment systolic blood pressure (SBP) vs. at baseline. The safety outcome was the number of patients suffering from hyperkalemia. High-dose finerenone (MD -0.31, 95% CI: -0.52, -0.11), esaxerenone (MD -0.54, 95% CI: -0.72, -0.30), and apararenone (MD -0.63, 95% CI: -0.90, -0.35) were associated with a superior reduction in proteinuria in patients with DKD. Regarding the change in eGFR, the results of all drugs were similar, and finerenone may have potential superiority in protecting the kidney. Compared with placebo, none of the treatments was associated with a higher probability of controlling systolic blood pressure during treatment. Moreover, spironolactone, esaxerenone, and 20 mg of finerenone presented a higher risk of hyperkalemia. This Bayesian network meta-analysis was the first to explore the optimal alternative among MRAs in the treatment of DKD and revealed the superiority of 20 mg of finerenone among MRAs in treating DKD. Systematic Review Registration: PROSPERO, identifier (CRD42022313826).
Project description:Diabetic nephropathy is defined as a decline in the renal function and an increase in the amount of albuminuria (>300 mg/day). The interruption of the renin-angiotensin-aldosterone system (RAAS) by well-established therapies such as angiotensin-converting enzyme inhibitor, angiotensin receptor blockers, calcium channel blockers or diuretics has been beneficial in reducing the progression of renal diseases; however, there is an increase in the levels of aldosterone due to the aldosterone escape phenomenon. Newer and novel approaches to counteract this aldosterone breakthrough while accentuating the anti-hypertensive and anti-proteinuric effects of these agents would be ideal and mineralocorticoid receptor antagonists fit in this slot perfectly. This review attempted to evaluate the safety and efficacy of and mineralocorticoid receptor antagonists for diabetic nephropathy. Presently mineralocorticoid receptor antagonists such as spironolactone, eplerenone and finerenone are being investigated as both monotherapies and as additional therapies. Clinical studies have shown that these drugs have been effective in the reduction of blood pressure, urinaryalbumin- excretion and estimated glomerular filtration rate. The commonly observed adverse effects are hyperkalemia, gynaecomastia and vaginal bleeding, that are bothersome with spironolactone seems to be avoidable if these patients are switched to non-steroidal and mineralocorticoid receptor antagonists such as finerenone and eplerenone. Most of the studies have only evaluated the shortterm effects of mineralocorticoid receptor antagonists on diabetic nephropathy. Hard outcomes such as cardiovascular events, creatinine doubling, progression to end-stage renal disease, mortality and the need for temporary or permanent dialysis need to be studied with these molecules.
Project description:Several pharmacological agents to prevent the progression of diabetic kidney disease (DKD) have been tested in patients with type 2 diabetes mellitus (T2DM) in the past two decades. With the exception of renin-angiotensin system blockers that have shown a significant reduction in the progression of DKD in 2001, no other pharmacological agent tested in the past two decades have shown any clinically meaningful result. Recently, the sodium-glucose cotransporter-2 inhibitor (SGLT-2i), canagliflozin, has shown a significant reduction in the composite of hard renal and cardiovascular (CV) endpoints including progression of end-stage kidney disease in patients with DKD with T2DM at the top of renin-angiotensin system blocker use. Another SGLT-2i, dapagliflozin, has also shown a significant reduction in the composite of renal and CV endpoints including death in patients with chronic kidney disease (CKD), regardless of T2DM status. Similar positive findings on renal outcomes were recently reported as a top-line result of the empagliflozin trial in patients with CKD regardless of T2DM. However, the full results of this trial have not yet been published. While the use of older steroidal mineralocorticoid receptor antagonists (MRAs) such as spironolactone in DKD is associated with a significant reduction in albuminuria outcomes, a novel non-steroidal MRA finerenone has additionally shown a significant reduction in the composite of hard renal and CV endpoints in patients with DKD and T2DM, with reasonably acceptable side effects.
Project description:Chronic kidney disease (CKD) is the most common cause of end-stage renal disease in patients with type 2 diabetes mellitus (T2DM). CKD increases the risk of cardiovascular diseases; therefore, its prevention and treatment are important. The prevention of diabetic kidney disease (DKD) can be achieved through intensive glycemic control and blood pressure management. Additionally, DKD treatment aims to reduce albuminuria and improve kidney function. In patients with T2DM, renin-angiotensin-aldosterone system inhibitors, sodium glucose cotransporter 2 inhibitors, and glucagon-like peptide-1 receptor agonists can delay the progression of DKD. Hence, there is a need for novel treatments that can effectively suppress DKD progression. Finerenone is a first-in-class nonsteroidal mineralocorticoid receptor antagonist with clinically proven efficacy in improving albuminuria, estimated glomerular filtration rate, and risk of cardiovascular events in early and advanced DKD. Therefore, finerenone is a promising treatment option to delay DKD progression. This article reviews the mechanism of renal effects and major clinical outcomes of finerenone in DKD.
Project description:BackgroundMineralocorticoid receptor antagonists (MRAs) were shown to delay chronic kidney disease (CKD) progression in patients with hypertension and/or heart failure (HF) and proteinuria.ObjectiveWe conducted a systematic literature review on real-world evidence to identify the literature gaps related to the efficacy and safety outcomes of MRAs administered to CKD patients.ResultsA total of 751 records were identified of which, 23 studies (26 publications) were analyzed. Studies included heterogeneous populations, including the overall CKD, CKD and diabetes, CKD and HF, and CKD and a history of cardiovascular disease. Most of the studies were small and non-rigorous, resulting in a notable lack of evidence in these populations. In the overall CKD population, steroidal MRAs resulted in a significant or sustained eGFR reduction but no efficacy in delaying progression to end-stage kidney disease. No cardiovascular protection was found. Results for all-cause mortality and hospitalization for HF were inconsistent; however, the longest follow-up studies indicate similar or lower incidence for spironolactone non-users. Most results consistently reported a higher incidence of hyperkalemia among patients on steroidal MRAs in all CKD stages, and side effects led to high discontinuation rates in the real-world setting.ConclusionsDespite the limited availability of evidence on the effectiveness and safety of steroidal MRAs in CKD patients and subgroups with diabetes, HF or history of cardiovascular disease, MRAs were shown to have a limited effect on renal and cardiovascular outcomes. Gaps in the evidence regarding the efficacy and safety of MRAs are particularly relevant in diabetic CKD patients; therefore, further research is warranted.
Project description:The burden of chronic kidney disease is increasing worldwide, largely due to the increasing global prevalence of diabetes mellitus and hypertension. While renin angiotensin system inhibitors and sodium-glucose cotransporter two inhibitors are the management cornerstone for reducing kidney and cardiovascular complications in patients with diabetic and non-diabetic kidney disease (DKD), they are partially effective and further treatments are needed to prevent the progression to kidney failure. Endothelin receptor antagonism represent a potential additional therapeutic option due to its beneficial effect on pathophysiological processes involved in progressive kidney disease including proteinuria, which are independently associated with progression of kidney disease. This review discusses the biological mechanisms of endothelin receptor antagonists (ERA) in kidney protection, the efficacy and safety of ERA in randomised controlled trials reporting on kidney outcomes, and its potential future use in both diabetic and non-DKDs.
Project description:Mineralocorticoid receptor antagonists (MRA) improve clinical outcomes in patients with heart failure with reduced ejection fraction (HFrEF) and reduce risk of heart failure (HF) hospitalization in patients with heart failure with preserved ejection fraction (HFpEF). However, the benefit and risks of MRA use are not clear in HF patients and chronic kidney disease (CKD) with estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2. We conducted a systematic review evaluating the efficacy and safety of MRA in patients with HF and CKD. PubMed, Embase, and Cochrane Central databases were searched for relevant studies on patients with HF and reduced renal function (defined as eGFR <60 mL/min/1.73 m2). Seven studies with 5,522 patients were included. We found 3 studies in patients with HFrEF, 1 study with HFpEF, and 2 in acute HF and 1 with mixed patient population of HF. Post hoc analyses from randomized controlled trials demonstrated reduction of risk in the primary end point (adverse cardiovascular outcomes and/or all-cause mortality and/or HF hospitalization) with MRA use in the CKD subgroup (eGFR 30 to 60 mL/min/1.73 m2) despite a greater risk of hyperkalemia and higher rates of drug discontinuation. In 3 observational studies, propensity score matching was performed to compare patients treated with and without MRA and did not identify benefits, but conclusions from these studies were limited due to residual confounding and concern for bias. In conclusion, benefits of MRA use in HF appear to be consistent in patients with reduced renal function (eGFR 30 to 60 mL/min/1.73 m).