Ontology highlight
ABSTRACT: Background and purpose
Perinatal stroke is a common cause of life-long neurobehavioral compromise. Mesenchymal stromal cells (MSCs) and EPO (erythropoietin) have each demonstrated short-term benefit with delayed administration after stroke, and combination therapy may provide the most benefit. The purpose of this study is to determine the long-term histological and functional efficacy of enhanced, intranasal stem cell therapy (MSC preexposed to EPO) compared with standard MSC or multidose systemic EPO.Methods
Transient middle cerebral artery occlusion or sham surgery was performed in postnatal day (P) 10 Sprague-Dawley rats, who were treated with single-dose intranasal MSC, MSC preexposed to EPO (MSC/EPO), multidose systemic EPO (EPO3; 1000 u/kg per dose×3 every 72 hours), or cell-conditioned media on P13 (day 3 [P13-P19] for EPO), or on P17 (day 7 [P17-P23] for EPO). At 2 months of age, animals underwent novel object recognition, cylinder rearing, and open field testing to assess recognition memory, sensorimotor function, and anxiety in adulthood.Results
MSC, MSC/EPO, and EPO3 improved brain volume when administered at 3 or 7 days after middle cerebral artery occlusion. MSC/EPO also enhanced long-term recognition memory with either day 3 or day 7 treatment, but EPO3 had the most long-term benefit, improving recognition memory and exploratory behavior and reducing anxiety.Conclusions
These data suggest that single-dose MSC/EPO and multidose systemic EPO improve long-term neurobehavioral outcomes even when administration is delayed, although EPO was the most effective treatment overall. It is possible that EPO represents a final common pathway for improved long-term repair, although the specific mechanisms remain to be determined.
SUBMITTER: Larpthaveesarp A
PROVIDER: S-EPMC7770074 | biostudies-literature |
REPOSITORIES: biostudies-literature