Sandwich-Like Fe&TiO2@C Nanocomposites Derived from MXene/Fe-MOFs Hybrids for Electromagnetic Absorption.
Ontology highlight
ABSTRACT: Electromagnetic pollution has been causing a series of problems in people's life, and electromagnetic absorbers with lightweight and broad absorbing bandwidth properties are widely desired. In this work, novel sandwich-like 2D laminated Fe&TiO2 nanoparticles@C nanocomposites were rationally designed and successfully developed from the MXene-MOFs hybrids. The formation of Fe and rutile-TiO2 nanoparticles sandwiched by the two-dimensional carbon nanosheets provided strong electromagnetic energy attenuation and good impedance matching for electromagnetic wave (EMW) absorption. As expected, the nanocomposites achieved a broad effective absorption bandwidth of 6.5 GHz at a thickness of only 1.6 mm and the minimum reflection loss (RL) value of - 51.8 dB at 6.6 GHz with a thickness of 3 mm. This work not only provides a good design and fabricating concept for the laminated metal and functional nanoparticles@C nanocomposites with good EMW absorption, but also offers an important guideline to fabricate various two-dimensional nanocomposites derived from the MXene precursors.
SUBMITTER: Deng B
PROVIDER: S-EPMC7770802 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA