Project description:We developed an assay that detects minus-strand RNA as a surrogate for actively replicating severe acute respiratory syndrome coronavirus 2. We detected minus-strand RNA in 41 persons with coronavirus disease up to 30 days after symptom onset. This assay might inform clinical decision-making about patient infectiousness.
Project description:The emergence of a new coronavirus in Wuhan China has triggered a global need for accurate diagnostic assays. Initially, mostly laboratory developed molecular tests were available but shortly thereafter different commercial assays started to appear and are still increasing in number. Although independent performance evaluations are ongoing, available data is still scarce. Here we provide a direct comparison of key performance characteristics of 13 commercial RT-PCR assays. Thirteen RT-PCR assays were selected based on the criteria that they can be used following generic RNA extraction protocols, on common PCR platforms and availability. Using a 10-fold and 2-fold dilution series of a quantified SARS-CoV-2 cell-cultured virus stock, performance was assessed compared to our in house validated assay. Specificity was tested by using RNA extracted from cultured common human coronaviruses. All RT-PCR kits included in this study exhibited PCR efficiencies > 90%, except for the Sentinel Diagnostics B E-gene RUO assay (80%). Analytical sensitivity varied between 3.3 RNA copies to 330 RNA copies. Only one assay cross reacted with another human coronavirus (MERS). This study provides a technical baseline of 13 different commercial PCR assays for SARS-CoV-2 detection that can be used by laboratories interested in purchasing any of these for further full clinical validation.
Project description:Rapid onsite whole-genome sequencing of two suspected severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) N gene diagnostic escape samples revealed a previously unreported N gene point mutation at genome position 29195. Because the G29195T mutation occurs within a region probed by a commonly referenced U.S. CDC N gene reverse transcription (RT)-PCR assay, we hypothesize that the G29195T mutation rendered the N gene target of a proprietary commercial assay undetectable. The putative diagnostic escape G29195T mutation demonstrates the need for nearly real-time surveillance, as emergence of a novel SARS-CoV-2 variant with the potential to escape diagnostic tests continues to be a threat. IMPORTANCE Accurate diagnostic detection of SARS-CoV-2 currently depends on the large-scale deployment of RT-PCR assays. SARS-CoV-2 RT-PCR assays target predetermined regions in the viral genomes by complementary binding of primers and probes to nucleic acid sequences in the clinical samples. Potential diagnostic escapes, such as those of clinical samples harboring the G29195T mutation, may result in false-negative SARS-CoV-2 RT-PCR results. The rapid detection and sharing of potential diagnostic escapes are essential for diagnostic laboratories and manufacturers around the world, to optimize their assays as SARS-CoV-2 continues to evolve.
Project description:Most individuals acutely infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibit mild symptoms. However, 10 to 20% of those infected develop long-term symptoms, referred to as post-coronavirus disease 2019 (COVID-19) condition (PCC). One hypothesis is that PCC might be exacerbated by viral persistence in tissue sanctuaries. Therefore, the accurate detection and quantification of SARS-CoV-2 are not only necessary for viral load monitoring but also crucial for detecting long-term viral persistence and determining whether viral replication is occurring in tissue reservoirs. In this study, the sensitivity and robustness of reverse transcription (RT)-droplet digital PCR (ddPCR) and RT-quantitative PCR (qPCR) techniques have been compared for the detection and quantification of SARS-CoV-2 genomic and subgenomic RNAs from oropharyngeal swabs taken from confirmed SARS-CoV-2-positive, SARS-CoV-2-exposed, and nonexposed individuals as well as from samples from mice infected with SARS-CoV-2. Our data demonstrated that both techniques presented equivalent results in the mid- and high-viral-load ranges. Additionally, RT-ddPCR was more sensitive than RT-qPCR in the low-viral-load range, allowing the accurate detection of positive results in individuals exposed to the virus. Overall, these data suggest that RT-ddPCR might be an alternative to RT-qPCR for detecting low viral loads in samples and for assessing viral persistence in samples from individuals with PCC. IMPORTANCE We developed one-step reverse transcription (RT)-droplet digital PCR (ddPCR) protocols to detect SARS-CoV-2 RNA and compared them to the gold-standard RT-quantitative PCR (RT-qPCR) method. RT-ddPCR was more sensitive than RT-qPCR in the low-viral-load range, while both techniques were equivalent in the mid- and high-viral-load ranges. Overall, these results suggest that RT-ddPCR might be a viable alternative to RT-qPCR when it comes to detecting low viral loads in samples, which is a highly relevant issue for determining viral persistence in as-yet-unknown tissue reservoirs in individuals suffering from post-COVID conditions or long COVID.
Project description:Sensitive and reliable diagnostic test systems based on real-time PCR are of great importance in the fight against the ongoing SARS-CoV-2 pandemic. The genetic variability of the SARS-CoV-2 virus leads to the accumulation of mutations, some of which may affect the sensitivity of modern PCR assays. The aim of this study was to search in Russian clinical samples for new mutations in SARS-CoV-2 gene N that can affect the detection by RT-PCR. In this study, the polymorphisms in the regions of the target gene N causing failed or poor detection of the target N in the RT-PCR assay on 12 selected samples were detected. Sequencing the entire N and E genes in these samples along with other 195 samples that were positive for both target regions was performed. Here, we identified a number of nonsynonymous mutations and one novel deletion in the N gene that affected the ability to detect a target in the N gene as well a few mutations in the E gene of SARS-CoV-2 that did not affect detection. Sequencing revealed that majority of the mutations in the N gene were located in the variable region between positions 193 and 235 aa, inside and nearby the phosphorylated serine-rich region of the protein N. This study highlights the importance of the further characterization of the genetic variability and evolution of gene N, the most common target for detecting SARS-CoV-2. The use of at least two targets for detecting SARS-CoV-2, including one for the E gene, will be necessary for reliable diagnostics.
Project description:The ability to distinguish between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) is of ongoing interest due to differences in transmissibility, responses to vaccination, clinical prognosis, and therapy. Although detailed genetic characterization requires whole-genome sequencing (WGS), targeted nucleic acid amplification tests can serve a complementary role in clinical settings, as they are more rapid and accessible than sequencing in most laboratories. We designed and analytically validated a two-reaction multiplex reverse transcription-quantitative PCR (RT-qPCR) assay targeting spike protein mutations L452R, E484K, and N501Y in reaction 1 and del69-70, K417N, and T478K in reaction 2. This assay had 95 to 100% agreement with WGS for 502 upper respiratory tract swab samples collected between 26 April 2021 and 1 August 2021, consisting of 43 Alpha, 2 Beta, 20 Gamma, 378 Delta, and 59 non-VOC infections. Validation in a separate group of 230 WGS-confirmed Omicron variant samples collected in December 2021 and January 2022 demonstrated 100% agreement. This RT-qPCR-based approach can be implemented in clinical laboratories already performing SARS-CoV-2 nucleic acid amplification tests to assist in local epidemiological surveillance and clinical decision-making.
Project description:Diagnostic assays for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are essential for patient management, infection prevention, and the public health response for coronavirus disease 2019 (COVID-19). The efficacy and reliability of these assays are of paramount importance in both tracking and controlling the spread of the virus. Real-time reverse transcription-PCR (RT-PCR) assays rely on a fixed genetic sequence for primer and probe binding. Mutations can potentially alter the accuracy of these assays and lead to unpredictable analytical performance characteristics and false-negative results. Here, we identify a G-to-U transversion (nucleotide 26372) in the SARS-CoV-2 E gene in three specimens with reduced viral detection efficiency using a widely available commercial assay. Further analysis of the public GISAID repository led to the identification of 18 additional genomes with this mutation, which reflect five independent mutational events. This work supports the use of dual-target assays to reduce the number of false-negative PCR results.
Project description:Viral transcription is an essential step of SARS-CoV-2 infection after invasion into the target cells. Antiviral drugs such as remdesivir, which is used to treat COVID-19 patients, targets the viral RNA synthesis. Understanding the mechanism of viral transcription may help to develop new therapeutic treatment by perturbing virus replication. In this study, we established 28 ddPCR assays and designed specific primers/probe sets to detect the RNA levels of 15 NSP, 9 ORF, and 4 structural genes of SARS-CoV-2. The transcriptional kinetics of these viral genes were determined longitudinally from the beginning of infection to 12 h postinfection in Caco-2 cells. We found that SARS-CoV-2 takes around 6 h to hijack the cells before the initiation of viral transcription process in human cells. Our results may contribute to a deeper understanding of the mechanisms of SARS-CoV-2 infection.
Project description:Hepatitis G virus (HGV) was recently identified as a new member of the Flaviviridae, but its clinical significance is still unclear. Since no immunoassay for the diagnosis of HGV is available, we developed a sensitive reverse transcription-PCR (RT-PCR) assay to facilitate the detection of the viral genome by mass screening in the clinical laboratory. Sequences within the 5'-noncoding region and within the putative NS5a region are independently amplified in the presence of digoxigenin-11-dUTP and are detected by hybridization with biotinylated capture probes binding to a streptavidin-coated matrix. Semiquantitative Enzymun-Test DNA detection via chemiluminescence can be performed either in a microtiter plate format or on fully automated ES 300 machines. We were able to detect at least 8 x 10(2) genome equivalents per ml of serum using both primer pairs. HGV was shown to be present in 43 of 130 (33%) serum samples from intravenous drug abusers with a high risk of parenteral exposure. However, only two of the patients were positive when the NS5a primers only were used, and only one patient was positive when only the 5'-noncoding region primers were used, demonstrating the increased sensitivity of HGV detection with two sets of primers. Among these patients, there was no obvious correlation with other viral infections like hepatitis B virus, hepatitis C virus, or human immunodeficiency virus. Within a blood donor panel, 3 of 92 (3%) samples were found to be HGV positive, suggesting that donated blood may need to be screened for HGV.