Informed sequential pooling approach to detect SARS-CoV-2 infection.
Ontology highlight
ABSTRACT: The alarming spread of the pandemic coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 virus requires several measures to reduce the risk of contagion. Every successful strategy in controlling the SARS-CoV-2 infection depends on timely diagnosis, which should include testing of asymptomatic carriers. Consequently, increasing the throughput for clinical laboratories for the purposes of conducting large-scale diagnostic testing is urgently needed. Here we support the hypothesis that standard diagnostic protocol for SARS-CoV-2 virus could be conveniently applied to pooled samples obtained from different subjects. We suggest that a two-step sequential pooling procedure could identify positive subjects, ensuring at the same time significant benefits of cost and time. The simulation data presented herein were used to assess the efficiency, in terms of number of required tests, both for random assignment of the subjects to the pools and for situations in which epidemiological and clinical data are used to create "informed" pools. Different scenarios were simulated to measure the effect of different pool sizes and different values for virus frequency. Our results allow for a customization of the pooling strategy according to the specific characteristics of the cohort being tested.
SUBMITTER: Millioni R
PROVIDER: S-EPMC7773195 | biostudies-literature | 2020
REPOSITORIES: biostudies-literature
ACCESS DATA