Unknown

Dataset Information

0

Fluid dynamics of COVID-19 airborne infection suggests urgent data for a scientific design of social distancing.


ABSTRACT: The COVID-19 pandemic is largely caused by airborne transmission, a phenomenon that rapidly gained the attention of the scientific community. Social distancing is of paramount importance to limit the spread of the disease, but to design social distancing rules on a scientific basis the process of dispersal of virus-containing respiratory droplets must be understood. Here, we demonstrate that available knowledge is largely inadequate to make predictions on the reach of infectious droplets emitted during a cough and on their infectious potential. We follow the position and evaporation of thousands of respiratory droplets by massive state-of-the-art numerical simulations of the airflow caused by a typical cough. We find that different initial distributions of droplet size taken from literature and different ambient relative humidity lead to opposite conclusions: (1) most versus none of the viral content settles in the first 1-2 m; (2) viruses are carried entirely on dry nuclei versus on liquid droplets; (3) small droplets travel less than [Formula: see text] versus more than [Formula: see text]. We point to two key issues that need to be addressed urgently in order to provide a scientific foundation to social distancing rules: (I1) a careful characterisation of the initial distribution of droplet sizes; (I2) the infectious potential of viruses carried on dry nuclei versus liquid droplets.

SUBMITTER: Rosti ME 

PROVIDER: S-EPMC7773744 | biostudies-literature | 2020 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Fluid dynamics of COVID-19 airborne infection suggests urgent data for a scientific design of social distancing.

Rosti M E ME   Olivieri S S   Cavaiola M M   Seminara A A   Mazzino A A  

Scientific reports 20201230 1


The COVID-19 pandemic is largely caused by airborne transmission, a phenomenon that rapidly gained the attention of the scientific community. Social distancing is of paramount importance to limit the spread of the disease, but to design social distancing rules on a scientific basis the process of dispersal of virus-containing respiratory droplets must be understood. Here, we demonstrate that available knowledge is largely inadequate to make predictions on the reach of infectious droplets emitted  ...[more]

Similar Datasets

| S-EPMC7429142 | biostudies-literature
| S-EPMC7290191 | biostudies-literature
| S-EPMC7806252 | biostudies-literature
| S-EPMC7737959 | biostudies-literature
| S-EPMC8016314 | biostudies-literature
| S-EPMC6140831 | biostudies-other
| S-EPMC8270185 | biostudies-literature
| S-EPMC7414384 | biostudies-literature
| S-EPMC7392246 | biostudies-literature
| S-EPMC7583361 | biostudies-literature