Correction: Microcultivation and FTIR spectroscopy-based screening revealed a nutrient-induced co-production of high-value metabolites in oleaginous Mucoromycota fungi.
Ontology highlight
ABSTRACT: [This corrects the article DOI: 10.1371/journal.pone.0234870.].
Correction: Microcultivation and FTIR spectroscopy-based screening revealed a nutrient-induced co-production of high-value metabolites in oleaginous Mucoromycota fungi.
PloS one 20201231 12
[This corrects the article DOI: 10.1371/journal.pone.0234870.]. ...[more]
Project description:Mucoromycota fungi possess a versatile metabolism and can utilize various substrates for production of industrially important products, such as lipids, chitin/chitosan, polyphosphates, pigments, alcohols and organic acids. However, as far as commercialisation is concerned, establishing industrial biotechnological processes based on Mucoromycota fungi is still challenging due to the high production costs compared to the final product value. Therefore, the development of co-production concept is highly desired since more than one valuable product could be produced at the time and the process has a potentially higher viability. To develop such biotechnological strategy, we applied a high throughput approach consisting of micro-titre cultivation and FTIR spectroscopy. This approach allows single-step biochemical fingerprinting of either fungal biomass or growth media without tedious extraction of metabolites. The influence of two types of nitrogen sources and different levels of inorganic phosphorus on the co-production of lipids, chitin/chitosan and polyphosphates for nine different oleaginous Mucoromycota fungi was evaluated. FTIR analysis of biochemical composition of Mucoromycota fungi and biomass yield showed that variation in inorganic phosphorus had higher effect when inorganic nitrogen source-ammonium sulphate-was used. It was observed that: (1) Umbelopsis vinacea reached almost double biomass yield compared to other strains when yeast extract was used as nitrogen source while phosphorus limitation had little effect on the biomass yield; (2) Mucor circinelloides, Rhizopus stolonifer, Amylomyces rouxii, Absidia glauca and Lichtheimia corymbifera overproduced chitin/chitosan under the low pH caused by the limitation of inorganic phosphorus; (3) Mucor circinelloides, Amylomyces rouxii, Rhizopus stolonifer and Absidia glauca were able to store polyphosphates in addition to lipids when high concentration of inorganic phosphorus was used; (4) the biomass and lipid yield of high-value lipid producers Mortierella alpina and Mortierella hyalina were significantly increased when high concentrations of inorganic phosphorus were combined with ammonium sulphate, while the same amount of inorganic phosphorus combined with yeast extract showed negative impact on the growth and lipid accumulation. FTIR spectroscopy revealed the co-production potential of several oleaginous Mucoromycota fungi forming lipids, chitin/chitosan and polyphosphates in a single cultivation process.
Project description:To assess whether Fourier Transform Infrared (FTIR) spectroscopy could be used to evaluate and monitor lipid extraction processes, the extraction methods of Folch, Bligh and Lewis were used. Biomass of the oleaginous fungi Mucor circinelloides and Mortierella alpina were employed as lipid-rich material for the lipid extraction. The presence of lipids was determined by recording infrared spectra of all components in the lipid extraction procedure, such as the biomass before and after extraction, the water and extract phases. Infrared spectra revealed the incomplete extraction after all three extraction methods applied to M.circinelloides and it was shown that mechanical disruption using bead beating and HCl treatment were necessary to complete the extraction in this species. FTIR spectroscopy was used to identify components, such as polyphosphates, that may have negatively affected the extraction process and resulted in differences in extraction efficiency between M.circinelloides and M.alpina. Residual lipids could not be detected in the infrared spectra of M.alpina biomass after extraction using the Folch and Lewis methods, indicating their complete lipid extraction in this species. Bligh extraction underestimated the fatty acid content of both M.circinelloides and M.alpina biomass and an increase in the initial solvent-to-sample ratio (from 3:1 to 20:1) was needed to achieve complete extraction and a lipid-free IR spectrum. In accordance with previous studies, the gravimetric lipid yield was shown to overestimate the potential of the SCO producers and FAME quantification in GC-FID was found to be the best-suited method for lipid quantification. We conclude that FTIR spectroscopy can serve as a tool for evaluating the lipid extraction efficiency, in addition to identifying components that may affect lipid extraction processes.
Project description:BackgroundOleaginous fungi can accumulate lipids by utilizing a wide range of waste substrates. They are an important source for the industrial production of omega-6 polyunsaturated fatty acids (gamma-linolenic and arachidonic acid) and have been suggested as an alternative route for biodiesel production. Initial research steps for various applications include the screening of fungi in order to find efficient fungal producers with desired fatty acid composition. Traditional cultivation methods (shake flask) and lipid analysis (extraction-gas chromatography) are not applicable for large-scale screening due to their low throughput and time-consuming analysis. Here we present a microcultivation system combined with high-throughput Fourier transform infrared (FTIR) spectroscopy for efficient screening of oleaginous fungi.ResultsThe microcultivation system enables highly reproducible fungal fermentations throughout 12 days of cultivation. Reproducibility was validated by FTIR and HPLC data. Analysis of FTIR spectral ester carbonyl peaks of fungal biomass offered a reliable high-throughput at-line method to monitor lipid accumulation. Partial least square regression between gas chromatography fatty acid data and corresponding FTIR spectral data was used to set up calibration models for the prediction of saturated fatty acids, monounsaturated fatty acids, polyunsaturated fatty acids, unsaturation index, total lipid content and main individual fatty acids. High coefficients of determination (R2 = 0.86-0.96) and satisfactory residual predictive deviation of cross-validation (RPDCV = 2.6-5.1) values demonstrated the goodness of these models.ConclusionsWe have demonstrated in this study, that the presented microcultivation system combined with rapid, high-throughput FTIR spectroscopy is a suitable screening platform for oleaginous fungi. Sample preparation for FTIR measurements can be automated to further increase throughput of the system.
Project description:γ-Linolenic acid (GLA) and carotenoids have attracted much interest due to their nutraceutical and pharmaceutical importance. Mucoromycota, typical oleaginous filamentous fungi, are known for their production of valuable essential fatty acids and carotenoids. In the present study, 81 fungal strains were isolated from different Egyptian localities, out of which 11 Mucoromycota were selected for further GLA and carotenoid investigation. Comparative analysis of total lipids by GC of selected isolates showed that GLA content was the highest in Rhizomucor pusillus AUMC 11616.A, Mucor circinelloides AUMC 6696.A, and M. hiemalis AUMC 6031 that represented 0.213, 0.211, and 0.20% of CDW, respectively. Carotenoid analysis of selected isolates by spectrophotometer demonstrated that the highest yield of total carotenoids (640 μg/g) was exhibited by M. hiemalis AUMC 6031 and M. hiemalis AUMC 6695, and these isolates were found to have a similar carotenoid profile with, β-carotene (65%), zeaxanthin (34%), astaxanthin, and canthaxanthin (5%) of total carotenoids. The total fatty acids of all tested isolates showed moderate antimicrobial activity against Staphylococcus aureus and Salmonella Typhi, and Penicillium chrysogenum. To the best of our knowledge, this is the first report on the highest yield of total lipid accumulation (51.74% CDW) by a new oleaginous fungal isolate R. pusillus AUMC 11616.A. A new scope for a further study on this strain will be established to optimize and improve its total lipids with high GLA production. So, R. pusillus AUMC 11616.A might be a potential candidate for industrial application.
Project description:BackgroundMucoromycota fungi are important producers of low- and high-value lipids. Mortierella alpina is used for arachidonic acid production at industrial scale. In addition, oleaginous Mucoromycota fungi are promising candidates for biodiesel production. A critical step in the development of such biotechnological applications is the selection of suitable strains for lipid production. The aim of the present study was to use the Duetz-microtiter plate system combined with Fourier transform infrared (FTIR) spectroscopy for high-throughput screening of the potential of 100 Mucoromycota strains to produce low- and high-value lipids.ResultsWith this reproducible, high-throughput method, we found several promising strains for high-value omega-6 polyunsaturated fatty acid (PUFA) and biodiesel production purposes. Gamma-linolenic acid content was the highest in Mucor fragilis UBOCC-A-109196 (24.5% of total fatty acids), and Cunninghamella echinulata VKM F-470 (24.0%). For the first time, we observed concomitant gamma-linolenic acid and alpha-linolenic acid (up to 13.0%) production in psychrophilic Mucor flavus strains. Arachidonic acid was present the highest amount in M. alpina ATCC 32222 (41.1% of total fatty acids). Low cultivation temperature (15 °C) activated the temperature sensitive ∆17 desaturase enzyme in Mortierella spp., resulting in eicosapentaenoic acid production with up to 11.0% of total fatty acids in M. humilis VKM F-1494. Cunninghamella blakesleeana CCM-705, Umbelopsis vinacea CCM F-539 and UBOCC-A-101347 showed very good growth (23-26 g/L) and lipid production (7.0-8.3 g/L) with high palmitic and oleic acid, and low PUFA content, which makes them attractive candidates for biodiesel production. Absidia glauca CCM 451 had the highest total lipid content (47.2% of biomass) of all tested strains. We also demonstrated the potential of FTIR spectroscopy for high-throughput screening of total lipid content of oleaginous fungi.ConclusionsThe use of Duetz-microtiter plate system combined with FTIR spectroscopy and multivariate analysis, is a feasible approach for high-throughput screening of lipid production in Mucoromycota fungi. Several promising strains have been identified by this method for the production of high-value PUFA and biodiesel.
Project description:Oleaginous filamentous fungi grown under the nitrogen limitation, accumulate high amounts of lipids in the form of triacylglycerides (TAGs) with fatty acid profiles similar to plant and fish oils. In this study, we investigate the effect of six phosphorus source concentrations combined with two types of nitrogen substrate (yeast extract and ammonium sulphate), on the biomass formation, lipid production, and fatty acid profile for nine oleaginous Mucoromycota fungi. The analysis of fatty acid profiles was performed by gas chromatography with flame ionization detector (GC-FID) and the lipid yield was estimated gravimetrically. Yeast extract could be used as both nitrogen and phosphorus source, without additional inorganic phosphorus supplementation. The use of inorganic nitrogen source (ammonium sulphate) requires strain-specific optimization of phosphorus source amount to obtain optimal lipid production regarding quantity and fatty acid profiles. Lipid production was decreased in ammonium sulphate-based media when phosphorus source was limited in all strains except for Rhizopus stolonifer. High phosphorus source concentration inhibited the growth of Mortierella fungi. The biomass (22 g/L) and lipid (14 g/L) yield of Umbelopsis vinacea was the highest among all the tested strains. KEY POINTS: • The strain specific P requirements of Mucoromycota depend on the nature of N source. • Yeast extract leads to consistent biomass and lipid yield and fatty acids profiles. • Umbelopsis vinacea showed the highest biomass (22 g/L) and lipid (14 g/L) yield. • High P source amounts inhibit the growth of Mortierella fungi.
Project description:Background:Oleaginous yeasts are considered as a potential lipid source for food, feed and biofuel production. In order to make the yeast-based lipid production environmentally and economically sustainable, there is a need for screening studies in order to find the best yeast lipid producers on different substrates, and to optimize cultivation conditions. Since the target parameter of such screening studies are lipid amounts and profiles, an analytical technique that is able to perform lipid analyses rapidly, reproducible and with high precision is highly desirable. The main objective of this study was to establish the non-invasive high-throughput Fourier transform infrared (FTIR) spectroscopy analysis for the prediction of lipid content and profile in oleaginous yeasts. Results:High-throughput FTIR spectroscopy allowed characterizing the total biochemical profile of oleaginous yeasts and enabled us to identify strains and substrate(s) providing the highest total lipid content. Some of the yeast strains grown under nitrogen-limiting conditions with glucose/xylose/mixture of glucose and xylose as carbon sources were accumulating lipids with a high proportion of free fatty acids. FTIR spectra were used to predict gravimetric and gas chromatography data by establishing multivariate calibration models. Coefficients of determination (R 2) for calibration models were obtained in a range between 0.62 and 0.92 for predicting lipid content. When using an independent test set, R 2 values between 0.53 and 0.79 were achieved for predicting fatty acid profile. The best spectral region(s) for the prediction of total lipid content was 3100-2800 cm-1 combined with 1800-700 cm-1, and for prediction of summed saturated (SAT), monounsaturated (MUFA) and polyunsaturated (PUFA) fatty acids: 3100-2800 cm-1, 3100-2800 cm-1 combined with 1700-1715 cm-1 and 3100-2800 cm-1 combined with 1800-1715 cm-1, respectively. The highest lipid accumulation was observed for strains Rhodotorula babjevae DBVPG 8058 on glucose and mixture of glucose and xylose and Lipomyces starkeyi CBS 2512 on xylose. Conclusions:Applying FTIR spectroscopy combined with multivariate data analysis allows performing rapid, non-invasive, reproducible and precise quantitative predictions of total lipid content and lipid profile. It allows also detecting different lipid fractions as triacylglycerols (TAGs) and free fatty acids and evaluating the total biochemical profile of cells. Several yeast strains with high lipid accumulation were identified.
Project description:Although internal electron transfer and oxygen reduction chemistry in cytochrome c oxidase are fairly well understood, the associated groups and pathways that couple these processes to gated proton translocation across the membrane remain unclear. Several possible pathways have been identified from crystallographic structural models; these involve hydrophilic residues in combination with structured waters that might reorganize to form transient proton transfer pathways during the catalytic cycle. To date, however, comparisons of atomic structures of different oxidases in different redox or ligation states have not provided a consistent answer as to which pathways are operative or the details of their dynamic changes during catalysis. In order to provide an experimental means to address this issue, FTIR spectroscopy in the 3,560-3,800 cm(-1) range has been used to detect weakly H-bonded water molecules in bovine cytochrome c oxidase that might change during catalysis. Full redox spectra exhibited at least four signals at 3,674(+), 3,638(+), 3,620(-), and 3,607(+) cm(-1). A more complex set of signals was observed in spectra of photolysis of the ferrous-CO compound, a reaction that mimics the catalytic oxygen binding step, and their D(2)O and H(2)(18)O sensitivities confirmed that they arose from water molecule rearrangements. Fitting with Gaussian components indicated the involvement of up to eight waters in the photolysis transition. Similar signals were also observed in photolysis spectra of the ferrous-CO compound of bacterial CcO from Paracoccus denitrificans. Such water changes are discussed in relation to roles in hydrophilic channels and proton/electron coupling mechanism.
Project description:Calcium controls important processes in fungal metabolism, such as hyphae growth, cell wall synthesis, and stress tolerance. Recently, it was reported that calcium affects polyphosphate and lipid accumulation in fungi. The purpose of this study was to assess the effect of calcium on the accumulation of lipids and polyphosphate for six oleaginous Mucoromycota fungi grown under different phosphorus/pH conditions. A Duetz microtiter plate system (Duetz MTPS) was used for the cultivation. The compositional profile of the microbial biomass was recorded using Fourier-transform infrared spectroscopy, the high throughput screening extension (FTIR-HTS). Lipid content and fatty acid profiles were determined using gas chromatography (GC). Cellular phosphorus was determined using assay-based UV-Vis spectroscopy, and accumulated phosphates were characterized using solid-state 31P nuclear magnetic resonance spectroscopy. Glucose consumption was estimated by FTIR-attenuated total reflection (FTIR-ATR). Overall, the data indicated that calcium availability enhances polyphosphate accumulation in Mucoromycota fungi, while calcium deficiency increases lipid production, especially under acidic conditions (pH 2-3) caused by the phosphorus limitation. In addition, it was observed that under acidic conditions, calcium deficiency leads to increase in carotenoid production. It can be concluded that calcium availability can be used as an optimization parameter in fungal fermentation processes to enhance the production of lipids or polyphosphates.
Project description:Phototropin (Phot), a blue-light photoreceptor in plants, consists of two FMN-binding domains (named LOV1 and LOV2) and a serine/threonine (Ser/Thr) kinase domain. We have investigated light-induced structural changes of LOV domains, which lead to the activation of the kinase domain, by means of light-induced difference FTIR spectroscopy. FTIR spectroscopy revealed that the reactive cysteine is protonated in both unphotolyzed and triplet-excited states, which is difficult to detect by other methods such as X-ray crystallography. In this review, we describe the light-induced structural changes of hydrogen-bonding environment of FMN chromophore and protein backbone in Adiantum neo1-LOV2 in the C=O stretching region by use of 13C-labeled samples. We also describe the comprehensive FTIR analysis of LOV2 domains among Arabidopsis phot1, phot2, and Adiantum neo1 with and without Jα helix domain.