Project description:Potential interactions between the SARS-CoV-2 virus and the human oral microbiota are currently investigated widely. Patients with COVID-19 requiring mechanical ventilation in an intensive care unit (ICU) setting are at high risk of developing severe complications, including ventilator-associated pneumonia, thus making oral health management important. The aim of this study was to evaluate the oral health status and assess the dysbiosis of cultivable oral bacteriota in COVID-19 patients hospitalized in an ICU with acute respiratory distress within 36 h following intubation. In this prospective cohort study, we recruited 56 adult COVID-19 patients that qualified for mechanical ventilation in the Temporary ICU for COVID-19 Patients of the University Hospital in Krakow. On admission to the ICU, oral health of patients was assessed using the modified Beck Oral Assessment Score (BOAS). Four oral habitats were sampled, namely the buccal mucosa, tongue, buccal dental surface and gingival pocket. Microorganisms were identified by MALDI/TOF mass spectrometry. The mean age of the study population was 66.5 ± 12.7 years, there were 24 (42.9%) females. All patients included in this study were intubated and ventilated in the ICU, with a corresponding high mortality rate (76.8%). On admission to ICU, 76.8% subjects scored 11-20 on the BOAS scale (median 12 [IQR 10-14]), indicating moderate or severe dysfunction of oral health. Potentially pathogenic bacteria were identified in the oral microbiota samples, including Acinetobacter baumannii, Enterococcus faecalis, Escherichia coli and Klebsiella pneumoniae in 23.2%, 39.3%, 17.9%, and 19.6% of patients, respectively. Lactobacillus spp. were present in 57.1% subjects. The mean CFU counts of all bacteria strains in dental brushes were 9.3E+5 (1.4E+6) and in gingival pockets 7.6E+5 (1.4E+6). The highest CFU counts were observed for Enterococcus spp. and, Lactobacillus spp., although these did not differ significantly from CFU counts of Streptococcus spp. and Staphylococcus spp. In this report we comprehensively characterized the oral health condition and cultivable oral bacteriota in COVID-19 patients hospitalized in an ICU with acute respiratory distress within 36 h following intubation. The oral bacteriota showed significant qualitative and quantitative dysbiosis. Hospitalization in an ICU and mechanical ventilation are important factors leading to oral dysbiosis in SARS-CoV-2 patients.
Project description:BackgroundSevere coronavirus disease 2019 (COVID-19) can manifest in rapid decompensation and respiratory failure with elevated inflammatory markers, consistent with cytokine release syndrome for which IL-6 blockade is an approved treatment.MethodsWe assessed effectiveness and safety of IL-6 blockade with tocilizumab in a single-center cohort of patients with COVID-19 requiring mechanical ventilation. The primary endpoint was survival probability postintubation; secondary analyses included an ordinal illness severity scale integrating superinfections. Outcomes in patients who received tocilizumab compared with tocilizumab-untreated controls were evaluated using multivariable Cox regression with propensity score inverse probability of treatment weighting (IPTW).Results154 patients were included, of whom 78 received tocilizumab and 76 did not. Median follow-up was 47 days (range, 28-67). Baseline characteristics were similar between groups, although tocilizumab-treated patients were younger (mean: 55 vs 60 years), less likely to have chronic pulmonary disease (10% vs 28%), and had lower D-dimer values at time of intubation (median: 2.4 vs 6.5 mg/dL). In IPTW-adjusted models, tocilizumab was associated with a 45% reduction in hazard of death (HR, .55; 95% CI, .33-.90) and improved status on the ordinal outcome scale [OR per 1-level increase, .58; .36-.94). Although tocilizumab was associated with an increased proportion of patients with superinfections (54% vs 26%; P < .001), there was no difference in 28-day case fatality rate among tocilizumab-treated patients with versus without superinfection (22% vs 15%; P = .42). Staphylococcus aureus accounted for ~50% of bacterial pneumonia.ConclusionsIn this cohort of mechanically ventilated COVID-19 patients, tocilizumab was associated with lower mortality despite higher superinfection occurrence.
Project description:Severe COVID-19 can manifest in rapid decompensation and respiratory failure with elevated inflammatory markers. This presentation is consistent with cytokine release syndrome in chimeric antigen receptor T cell therapy, for which IL-6 blockade is approved treatment. We assessed effectiveness and safety of IL-6 blockade with tocilizumab in a single-center cohort of patients with COVID-19 requiring mechanical ventilation. The primary endpoint was survival probability post-intubation; secondary analyses included an ordinal illness severity scale integrating superinfections. Outcomes in patients who received tocilizumab compared to tocilizumab-untreated controls were evaluated using multivariable Cox regression with propensity score inverse probability weighting (IPTW). 154 patients were included, of whom 78 received tocilizumab and 76 did not. Median follow-up was 47 days (range 28-67). Baseline characteristics were similar between groups, although tocilizumab-treated patients were younger (mean 55 vs. 60 years), less likely to have chronic pulmonary disease (10% vs. 28%), and had lower D-dimer values at time of intubation (median 2.4 vs. 6.5 mg/dL). In IPTW-adjusted models, tocilizumab was associated with a 45% reduction in hazard of death [hazard ratio 0.55 (95% CI 0.33, 0.90)] and improved status on the ordinal outcome scale [odds ratio per 1-level increase: 0.59 (0.36, 0.95)]. Though tocilizumab was associated with an increased proportion of patients with superinfections (54% vs. 26%; p<0.001), there was no difference in 28-day case fatality rate among tocilizumab-treated patients with versus without superinfection [22% vs. 15%; p=0.42]. In this cohort of mechanically ventilated COVID-19 patients, tocilizumab was associated with a decreased likelihood of death despite higher superinfection occurrence. Randomized controlled trials are urgently needed to confirm these findings.
Project description:ObjectiveTo determine the incidence, predictors, and outcome of pneumothorax (PNX)/pneumomediastinum (PMD) in coronavirus disease 2019 (COVID-19) acute respiratory distress syndrome (ARDS).DesignObservational study.SettingTertiary-care university hospital.ParticipantsOne hundred sixteen consecutive critically ill, invasively ventilated patients with COVID-19 ARDS.InterventionsThe authors collected demographic, mechanical ventilation, imaging, laboratory, and outcome data. Primary outcome was the incidence of PNX/PMD. Multiple logistic regression analyses were performed to identify predictors of PNX/PMD.Measurements and main resultsPNX/PMD occurred in a total of 28 patients (24.1%), with 22 patients developing PNX (19.0%) and 13 developing PMD (11.2%). Mean time to development of PNX/PMD was 14 ± 11 days from intubation. The authors found no significant difference in mechanical ventilation parameters between patients who developed PNX/PMD and those who did not. Mechanical ventilation parameters were within recommended limits for protective ventilation in both groups. Ninety-five percent of patients with PNX/PMD had the Macklin effect (linear collections of air contiguous to the bronchovascular sheaths) on a baseline computed tomography scan, and tended to have a higher lung involvement at intensive care unit (ICU) admission (Radiographic Assessment of Lung Edema score 32.2 ± 13.4 v 18.7 ± 9.8 in patients without PNX/PMD, p = 0.08). Time from symptom onset to intubation and time from total bilirubin on day two after ICU admission were the only independent predictors of PNX/PMD. Mortality was 60.7% in patients who developed PNX/PMD versus 38.6% in those who did not (p = 0.04).ConclusionPNX/PMD occurs frequently in COVID-19 patients with ARDS requiring mechanical ventilation, and is associated with increased mortality. Development of PNX/PMD seems to occur despite use of protective mechanical ventilation and has a radiologic predictor sign.
Project description:BackgroundNutrition therapy is essential in critically ill adults. Little is known about appropriate nutrition therapy in patients with severe coronavirus disease 2019 (COVID-19) infection.MethodsThis was a retrospective, observational study in adult patients with confirmed COVID-19 infection receiving mechanical ventilation. Data regarding patient demographics and nutrition therapy were collected. Patients that received enteral nutrition within 24 hours of starting mechanical ventilation were compared with patients starting enteral nutrition later. The primary outcome was inpatient length of stay. Propensity score matching was conducted to control for baseline differences in patient groups.ResultsOne hundred fifty-five patients were included in final analysis. Patients who received enteral nutrition within 24 hours received a significantly greater daily amount of calories (17.5 vs 15.2 kcal/kg, P = .015) and protein (1.04 vs 0.85 g/kg, P = .003). There was no difference in length of stay (18.5 vs 23.5 days, P = .37). The propensity score analysis included 100 patients. Following propensity scoring, significant differences in daily calorie (17.7 [4.6] vs 15.1 [5.1] kcal/kg/d, P = .009) and protein (1.03 [0.35] vs 0.86 [0.38] g/kg/d, P = .014) provision remained. No differences in length of stay or other outcomes were noted in the propensity score analysis.ConclusionInitiation of enteral nutrition within 24 hours was not associated with improved outcomes in mechanically ventilated adults with COVID-19. No harm was detected either. Future research should seek to clarify optimal timing of enteral nutrition initiation in patients with COVID-19 who require mechanical ventilation.
Project description:The prone position (PP) is increasingly used in mechanically ventilated coronavirus disease 2019 (COVID-19) acute respiratory distress syndrome (ARDS) patients. However, studies investigating the influence of the PP are currently lacking in these patients. This is the first study to investigate the influence of the PP on the oxygenation and decarboxylation in COVID-19 patients. A prospective bicentric study design was used, and in mechanically ventilated COVID-19 patients, PP was indicated from a partial pressure of oxygen in arterial blood (PaO2)/fraction of inspired oxygen (FIO2) ratio of <200. Patients were left prone for 16 h each. Pressure levels, FIO2, were adjusted to ensure a PaO2 greater than 60 mmHg. Blood gas analyses were performed before (baseline 0.5 h), during (1/2/5.5/9.5/13 h), and after being in the PP (1 h), the circulatory/ventilation parameters were continuously monitored, and lung compliance (LC) was roughly calculated. Responders were defined compared to the baseline value (PaO2/FIO2 ratio increase of ≥15%; partial pressure of carbon dioxide (PaCO2) decrease of ≥2%). 13 patients were included and 36 PP sessions were conducted. Overall, PaO2/FIO2 increased significantly in the PP (p < 0.001). Most PaO2/FIO2 responders (29/36 PP sessions, 77%) were identified 9.5 h after turning prone (14% slow responders), while most PaCO2 responders (15/36 PP sessions, 42%) were identified 13 h after turning prone. A subgroup of patients (interval intubation to PP ≥3 days) showed less PaO2/FIO2 responders (16% vs. 77%). An increase in PaCO2 and minute ventilation in the PP showed a significant negative correlation (p < 0.001). LC (median before the PP = 38 mL/cm H2O; two patients with LC >80 mL/cm H2O) showed a significant positive correlation with the 28 day survival of patients (p = 0.01). The PP significantly improves oxygenation in COVID-19 ARDS patients. The data suggest that they also benefit most from an early PP. A decrease in minute ventilation may result in fewer PaCO2 responders. LC may be a predictive outcome parameter in COVID-19 patients. Retrospectively registered.
Project description:BackgroundSolid data on cardiovascular derangements in critically ill COVID-19 patients remain scarce. The aim of this study is to describe hemodynamic characteristics in a cohort of COVID-19-related critically ill patients.MethodsA retrospective observational cohort study in twenty-eight consecutive mechanically ventilated COVID-19 patients. Pulse contour analysis-derived data were obtained from all patients, using the PiCCO® system.ResultsThe mean arterial pressure increased from 77 ± 10 mmHg on day 1 to 84 ± 9 mmHg on day 21 (p=0.04), in combination with the rapid tapering and cessation of norepinephrine and the gradual use of antihypertensive drugs in the vast majority of patients. The cardiac index increased significantly from 2.8 ± 0.7 L/min/m2 on day 1 to 4.0 ± 0.8 L/min/m2 on day 21 (p < 0.001). Dobutamine was administered in only two patients. Mean markers of left ventricular contractility and peripheral perfusion, as well as lactate levels, remained within the normal range. Despite a constant fluid balance, extravascular lung water index decreased significantly from 17 ± 7 mL/kg on day 1 to 11 ± 4 mL/kg on day 21 (p < 0.001). Simultaneously, intrapulmonary right-to-left shunt fraction (Q s/Q t) decreased significantly from 27 ± 10% in week 1 to 15 ± 9% in week 3 (p=0.007). PaO2/FiO2 ratio improved from 159 ± 53 mmHg to 319 ± 53 mmHg (p < 0.001), but static lung compliance remained unchanged.ConclusionsIn general, this cohort of patients with COVID-19 respiratory failure showed a marked rise in blood pressure over time, not accompanied by distinctive markers of circulatory failure. Characteristically, increased extravascular lung water, vascular permeability, and intrapulmonary shunt diminished over time, concomitant with an improvement in gas exchange.
Project description:PurposeThe outcomes of patients requiring invasive mechanical ventilation for COVID-19 remain poorly defined. We sought to determine clinical characteristics and outcomes of patients with COVID-19 managed with invasive mechanical ventilation in an appropriately resourced US health care system.MethodsOutcomes of COVID-19 infected patients requiring mechanical ventilation treated within the Inova Health System between March 5, 2020 and April 26, 2020 were evaluated through an electronic medical record review.Results1023 COVID-19 positive patients were admitted to the Inova Health System during the study period. Of these, 164 (16.0%) were managed with invasive mechanical ventilation. All patients were followed to definitive disposition. 70/164 patients (42.7%) had died and 94/164 (57.3%) were still alive. Deceased patients were older (median age of 66 vs. 55, p <0.0001) and had a higher initial d-dimer (2.22 vs. 1.31, p = 0.005) and peak ferritin levels (2998 vs. 2077, p = 0.016) compared to survivors. 84.3% of patients over 70 years old died in the hospital. Conversely, 67.4% of patients age 70 or younger survived to hospital discharge. Younger age, non-Caucasian race and treatment at a tertiary care center were all associated with survivor status.ConclusionMortality of patients with COVID-19 requiring invasive mechanical ventilation is high, with particularly daunting mortality seen in patients of advanced age, even in a well-resourced health care system. A substantial proportion of patients requiring invasive mechanical ventilation were not of advanced age, and this group had a reasonable chance for recovery.