Project description:Interleukin-10 (IL-10) is an anti-inflammatory cytokine that is active as a swapped domain dimer and is used in bacterial therapy of gut inflammation. IL-10 can be used as treatment of a wide range of pulmonary diseases. Here we have developed a non-pathogenic chassis (CV8) of the human lung bacterium M. pneumoniae (MPN) to treat lung diseases. We found that IL-10 expression by MPN has a limited impact on the lung inflammatory response in mice. To solve these issues, we rationally designed a single-chain IL-10 (SC-IL10) with or without surface mutations, using our protein design software (ModelX and FoldX). The designed SC-IL10 molecules increase in comparison with IL-10 WT, the effective expression in MPN four-fold, and the activity in mouse and human cell lines between 10 to 60 times. In vivo, the SC-IL10 molecules expressed in the mouse lung by CV8 showed a powerful anti-inflammatory effect upon Pseudomonas aeruginosa lung infection. This rational design strategy could be used to other molecules with immunomodulatory properties used in bacterial therapy.
Project description:BackgroundInterleukin-33 (IL-33) belongs to the IL-1 cytokine family and resides in the nuclei of various cell types. In the neural retina, IL-33 is predominately expressed in Müller cells although its role in health and disease is ill-defined. Müller cell gliosis is a critical response during the acute phase of retinal detachment (RD), and in this study, we investigated if IL-33 was modulatory in the inflammatory and neurodegenerative pathology which is characteristic of this important clinical condition.MethodsRD was induced by subretinal injection of sodium hyaluronate into C57BL/6?J (WT) and IL-33-/- mice and confirmed by fundus imaging and optical coherence tomography (OCT). The expression of inflammatory cytokines, complement components and growth factors was examined by RT-PCR. Retinal neurodegeneration, Müller cell activation and immune cell infiltration were assessed using immunohistochemistry. The expression of inflammatory cytokines in primary Müller cells and bone marrow-derived macrophages (BM-DMs) was assessed by RT-PCR and Cytometric Bead Array.ResultsRD persisted for at least 28?days after the injection of sodium hyaluronate, accompanied by significant cone photoreceptor degeneration. The mRNA levels of CCL2, C1ra, C1s, IL-18, IL-1?, TNF?, IL-33 and glial fibrillary acidic protein (GFAP) were significantly increased at day 1 post-RD, reduced gradually and, with the exception of GFAP and C1ra, returned to the basal levels by day 28 in WT mice. In IL-33-/- mice, RD induced an exacerbated inflammatory response with significantly higher levels of CCL2, IL-1? and GFAP when compared to WT. Sustained GFAP activation and immune cell infiltration was detected at day 28 post-RD in IL-33-/- mice. Electroretinography revealed a lower A-wave amplitude at day 28 post-RD in IL-33-/- mice compared to that in WT RD mice. IL-33-/- mice subjected to RD also had significantly more severe cone photoreceptor degeneration compared to WT counterparts. Surprisingly, Müller cells from IL-33-/- mice expressed significantly lower levels of CCL2 and IL-6 compared with those from WT mice, particularly under hypoxic conditions, whereas IL-33-/- bone marrow-derived macrophages expressed higher levels of inducible nitric oxide synthase, TNF?, IL-1? and CCL2 after LPS?+?IFN? stimulation compared to WT macrophages.ConclusionIL-33 deficiency enhanced retinal degeneration and gliosis following RD which was related to sustained subretinal inflammation from infiltrating macrophages. IL-33 may provide a previously unrecognised protective response by negatively regulating macrophage activation following retinal detachment.
Project description:Interleukin- (IL-) 38 is a recently discovered cytokine and is the tenth member of the IL-1 cytokine family. IL-38 shares structural features with IL-1 receptor antagonist (IL-1Ra) and IL-36Ra. IL-36R is the specific receptor of IL-38, a partial receptor antagonist of IL-36. IL-38 inhibits the production of T-cell cytokines IL-17 and IL-22. IL-38 also inhibits the production of IL-8 induced by IL-36?, thus inhibiting inflammatory responses. IL-38-related cytokines, including IL-1Ra and IL-36Ra, are involved in the regulation of inflammation and immune responses. The study of IL-38 and IL-38-related cytokines might provide new insights for developing anti-inflammatory treatments in the near future.
Project description:IL-12 and IL-23 cytokines respectively drive Th1 and Th17 type responses. Yet, little is known regarding the biology of these receptors. As the IL-12 and IL-23 receptors share a common subunit, it has been assumed that these receptors are co-expressed. Surprisingly, we find that the expression of each of these receptors is restricted to specific cell types, in both mouse and human. Indeed, although IL-12R?2 is expressed by NK cells and a subset of ?? T cells, the expression of IL-23R is restricted to specific T cell subsets, a small number of B cells and innate lymphoid cells. By exploiting an IL-12- and IL-23-dependent mouse model of innate inflammation, we demonstrate an intricate interplay between IL-12R?2 NK cells and IL-23R innate lymphoid cells with respectively dominant roles in the regulation of systemic versus local inflammatory responses. Together, these findings support an unforeseen lineage-specific dichotomy in the in vivo role of both the IL-12 and IL-23 pathways in pathological inflammatory states, which may allow more accurate dissection of the roles of these receptors in chronic inflammatory diseases in humans.
Project description:Interleukin-12 (IL-12) and IL-23 are thought to have central roles in inflammation and are critical to pathologies associated with inflammation-induced bone disorders. The deletion of IL-12p40 (a common subunit of IL-12 and IL-23) can improve bone regeneration. However, the relative roles of IL-12 and IL-23 in bone disorders are largely unknown. Methods: Ectopic bone formation and skull defect models were established to evaluate the relative roles of IL-12 and IL-23 in inflammatory bone disorders. Differences in bone mass among WT, IL-12p35-/-, and IL-12p40-/- mice (young and elderly) were detected by micro-CT. Osteogenic and osteoclastic activities were explored using ELISA, qRT-PCR, and histological analysis. Moreover, the mechanisms by which IL-12 and IL-23 regulated the differentiation of BMMSCs and RAW264.7 cells were explored using Alizarin Red and tartrate-resistant acid phosphatase staining in vitro. Apilimod was used to inhibit IL-12 and IL-23 production in vivo. Results: Mice deficient in IL-12p40 promoted bone formation and protected against aging-related bone loss. By contrast, bone loss was aggravated in IL-12-/- mice, suggesting that IL-23 may play a dominant role in inflammation-related bone disorders. Mechanistically, IL-12 and IL-23 coupled osteogenesis and osteoclastic activities to regulate bone homeostasis and repair. IL-23 deficiency increased bone formation and inhibited bone resorption. Finally, apilimod treatment significantly improved bone regeneration and calvarial defect repair. Conclusion: These data collectively uncover a previously unrecognized role of IL-23 in skeletal tissue engineering. Thus, IL-23 can act as a biomarker to predict diseases and treatment efficacy, and apilimod can be used as an effective therapeutic drug to combat inflammatory bone disorders.
Project description:Background: The mechanisms underlying ozone (O3)-induced pulmonary inflammation remain unclear. Interleukin (IL)-10 is an anti-inflammatory cytokine that is known to inhibit inflammatory mediators. Objectives: The current study investigated the molecular mechanisms underlying IL-10-mediated attenuation of O3-induced pulmonary inflammation in mice. Methods: Il10-deficient (Il10-/-) and wild type (Il10+/+) mice were exposed to 0.3-ppm O3 or filtered air for 24, 48 or 72 hr. Immediately following exposure, differential cell counts, and total protein (a marker of lung permeability) were assessed from bronchoalveolar lavage fluid (BALF). mRNA and protein levels of cellular mediators were determined from lung homogenates. We also utilized global mRNA expression analyses of lung tissue with Ingenuity Pathway Analyses (IPA) to identify patterns of gene expression through which IL-10 modifies O3-induced inflammation. Results: Mean numbers of BALF polymorphonuclear leukocytes (PMNs) were significantly greater in Il10-/- mice than in Il10+/+ mice after exposure to O3 at all time points tested. O3-enhanced nuclear NF-kB translocation was elevated in the lungs of Il10-/- compared to Il10+/+ mice. Gene expression analyses revealed several key IL-10 and O3-dependent mediators, including IL-6, MIP-2, IL-1 and CD86. Conclusions: Results indicated that IL-10 protects against O3-induced pulmonary neutrophilic inflammation and cell proliferation. Moreover, gene expression analyses identified three response pathways and several novel genetic targets (e.g. Ccr1, Socs3, Il33, Hat1, and Gale) through which IL10 may modulate the innate and adaptive immune response. These novel mechanisms of protection against the pathogenesis of O3-induced pulmonary inflammation may also provide potential therapeutic targets to protect susceptible individuals. PARALLEL study design with 26 samples. Biological replicates: 2 to 3 replicates per group with wild type air exposed animals as controls for each time point (24, 48, 72 hours). Time-Course, Dose-Response, Strain comparison
Project description:The interleukin (IL)-22R1 chain of the heterodimeric IL-22 receptor is not expressed on normal leukocytes, but this receptor is expressed on T cells from anaplastic lymphoma kinase-positive (ALK(+)) anaplastic large cell lymphoma (ALCL) patients. To investigate the consequences of aberrant expression of this receptor on lymphocytes, we generated transgenic mice that express IL-22R1 on lymphocytes. The health of these animals progressively deteriorated at 8 to 12 weeks of age, as they displayed respiratory distress, rough coat and sluggish movement, and subsequent lethality due to multiorgan inflammation. The IL-22R1 transgenic animals developed neutrophilia that correlated with increased levels of circulating IL-17 and granulocyte colony-stimulating factor. In addition, these mice had increased serum IL-22 levels, suggesting that T cells expressing IL-22R1 generate IL-22 in a positive autoregulatory loop. As a result of the mouse model findings, we analyzed circulating cytokine levels in ALK(+)ALCL patients and detected elevated levels of IL-22, IL-17, and IL-8 in untreated patient samples. Importantly, IL-22 and IL-17 were undetectable in all patients who were in complete remission after chemotherapy. This study documents a previously unknown role of IL-22R1 in inflammation and identifies the involvement of IL-22R1/IL-22 in ALK(+)ALCL.
Project description:IL-25 initiates, promotes, and augments Th2 immune responses. In this study, we report that Act1, a key component in IL-17-mediated signaling, is an essential signaling molecule for IL-25 signaling. Although Act1-deficient mice showed reduced expression of KC (CXCL1) and neutrophil recruitment to the airway compared with wild-type mice in response to IL-17 stimulation, Act1 deficiency abolished IL-25-induced expression of IL-4, IL-5, IL-13, eotaxin-1 (CCL11), and pulmonary eosinophilia. Using a mouse model of allergic pulmonary inflammation, we observed diminished Th2 responses and lung inflammation in Act1-deficient mice compared with wild-type mice. Importantly, Act1 deficiency in epithelial cells reduced the phenotype of allergic pulmonary inflammation due to loss of IL-17-induced neutrophilia and IL-25-induced eosinophilia, respectively. These results demonstrate the essential role of epithelial-derived Act1 in allergic pulmonary inflammation through the distinct impact of the IL-17R-Act1 and IL-25R-Act1 axes. Such findings are crucial for the understanding of pathobiology of atopic diseases, including allergic asthma, which identifies Act1 as a potential therapeutic target.
Project description:Patients with alcohol-associated liver cirrhosis (AC) may develop severe alcohol-associated hepatitis (sAH), but the mechanisms underlying the transition from AC to sAH still remain unclear. We performed single cell RNA (scRNA) sequencing analysis of livers and peripheral white blood cells (WBC) from sAH and AC patients. We found that the significant difference between sAH and AC was that sAH livers had a markedly higher number of neutrophil subsets than AC livers. Thus, we further focused on the neutrophil cluster and found two distinct sAH-specific liver neutrophils are notably characterized by heightened expression of CXCL8 (IL-8) defined as IL-8+ neutrophils blood. Our current study has demonstrated that sAH had self-sustaining IL-8+ neutrophil accumulation that likely drives inexorable liver inflammation and failure in sAH. Based on our study, we believe targeting IL-8+ neutrophils is a promising therapeutic strategy for sAH.
Project description:The IL-1 signaling pathway has been shown to play a critical role in the pathogenesis of chronic, autoinflammatory skin diseases such as psoriasis. However, the exact cellular and molecular mechanisms have not been fully understood. Here, we show that IL-1? is significantly elevated in psoriatic lesional skin and imiquimod-treated mouse skin. In addition, IL-1R signaling appears to correlate with psoriasis disease progression and treatment response. IL-1 signaling in both dermal ?? T cells and other cells such as keratinocytes is essential to an IMQ-induced skin inflammation. IL-1? induces dermal ?? T cell proliferation and IL-17 production in mice. In addition, IL-1? stimulates keratinocytes to secrete chemokines that preferentially chemoattract peripheral CD27- CCR6+IL-17 capable of producing ?? T cells (??T17). Further studies showed that endogenous IL-1? secretion is regulated by skin commensals to maintain dermal ??T17 homeostasis in mice. Mouse skin associated with Corynebacterium species, bacteria enriched in human psoriatic lesional skin, has increased IL-1? and dermal ??T17 cell expansion. Thus, the IL-1?-IL-1R signaling pathway may contribute to skin inflammation and psoriasis pathogenesis via the direct regulation of dermal IL-17-producing cells and stimulation of keratinocytes for amplifying inflammatory cascade.