Unknown

Dataset Information

0

Exploring brain-behavior relationships in the N-back task.


ABSTRACT: Working memory (WM) function has traditionally been investigated in terms of two dimensions: within-individual effects of WM load, and between-individual differences in task performance. In human neuroimaging studies, the N-back task has frequently been used to study both. A reliable finding is that activation in frontoparietal regions exhibits an inverted-U pattern, such that activity tends to decrease at high load levels. Yet it is not known whether such U-shaped patterns are a key individual differences factor that can predict load-related changes in task performance. The current study investigated this question by manipulating load levels across a much wider range than explored previously (N ​= ​1-6), and providing a more comprehensive examination of brain-behavior relationships. In a sample of healthy young adults (n ​= ​57), the analysis focused on a distinct region of left lateral prefrontal cortex (LPFC) identified in prior work to show a unique relationship with task performance and WM function. In this region it was the linear slope of load-related activity, rather than the U-shaped pattern, that was positively associated with individual differences in target accuracy. Comprehensive supplemental analyses revealed the brain-wide selectivity of this pattern. Target accuracy was also independently predicted by the global resting-state connectivity of this LPFC region. These effects were robust, as demonstrated by cross-validation analyses and out-of-sample prediction, and also critically, were primarily driven by the high-load conditions. Together, the results highlight the utility of high-load conditions for investigating individual differences in WM function.

SUBMITTER: Lamichhane B 

PROVIDER: S-EPMC7781187 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7345498 | biostudies-literature
| S-EPMC5997903 | biostudies-literature
| S-EPMC7203524 | biostudies-literature
| S-EPMC8315806 | biostudies-literature
| S-EPMC6865510 | biostudies-literature
| S-EPMC7727359 | biostudies-literature
| S-EPMC6628086 | biostudies-literature
| S-EPMC4785834 | biostudies-literature
2010-06-10 | E-GEOD-1684 | biostudies-arrayexpress
| S-EPMC8963788 | biostudies-literature