Nitrogen signals and their ecological significance for seed germination of ten psammophilous plant species from European dry acidic grasslands.
Ontology highlight
ABSTRACT: The presented study evaluated effects of potassium nitrate (KNO3), ammonium nitrate (NH4 NO3) and ammonium chloride (NH4Cl) on the germination-related characteristics of 10 species from European dry acidic grasslands. Germination was studied under controlled laboratory conditions. The seeds were subjected to KNO3, NH4 NO3 and NH4Cl in four doses (1, 10, 50 and 100 mM) and to distilled water. Final germination percentage, index of germination velocity and index of germination synchrony were determined. Content of nitrogen in the soil probed from the site of seeds collection was also analyzed. Significant effects of type of the nitrogen compounds and their concentrations were observed. High concentrations of nitrogen-containing salts inhibited completion of germination in almost all species. Helichrysum arenarium and Hypericum perforatum showed preference for NH4+ over NO3?, whereas Arnoseris minima, Alyssum montanum, Jasione montana and Spergula morisonii showed preference for NO3? over NH4+. Centaurea scabiosa, C. stoebe and Hypochaeris radicata had no preference and wide tolerance to the type of nitrogen-containing compound. Echium vulgare showed differential response hard for interpretation. A. montanum and J. montana showed stenotopic behavior in terms of nitrogen-related conditions. It is proposed that nitrogen-rich soil gaps favor establishment of more nitro-tolerant plant species (e.g. C. scabiosa, C. stoebe and H. radicata) as compared to nitrogen-poor ones.
SUBMITTER: Wala M
PROVIDER: S-EPMC7781371 | biostudies-literature | 2021
REPOSITORIES: biostudies-literature
ACCESS DATA