Project description:Autosomal recessive forms of retinitis punctata albescens (RPA) have been described. RPA is characterized by progressive retinal degeneration due to alteration in visual cycle and consequent deposit of photopigments in retinal pigment epithelium. Five loci have been linked to RPA onset. Among these, the retinaldehyde-binding protein 1 gene, RLBP1, is the most frequently involved and several founder mutations were reported. We report results of a genetic molecular investigation performed on a large Sicilian family in which appears a young woman with RPA.The proband is in homozygous condition for a novel RLBP1 single-pair deletion, and her healthy parents, both heterozygous, are not consanguineous. Thenovelc.398delC (p.P133Qfs*258) involves the exon 6 and leads to a premature stop codon, resulting in a truncated protein entirely missing of CRAL-TRIO lipid-binding domain. Pedigree analysis showed other non-consanguineous relatives heterozygous for the same mutation in the family. Extension of mutation research in the native town of the proband revealed its presence also in healthy subjects, in a heterozygous condition.A novel RLBP1 truncating mutation was detected in a young girl affected by RPA. Although her parents are not consanguineous, the mutation was observed in a homozygous condition. Being them native of the same small Sicilian town of Fiumedinisi, the hypothesis of a geographical area-related mutation was assessed and confirmed.
Project description:PurposeTo identify relevant criteria for gene therapy based on clinical and genetic characteristics of rod-cone dystrophy associated with RLBP1 pathogenic variants in a large cohort comprising children and adults.DesignRetrospective cohort study.ParticipantsPatients with pathogenic variants in RLBP1 registered in a single French reference center specialized in inherited retinal dystrophies.MethodsClinical, multimodal imaging, and genetic findings were reviewed.Main outcome measuresAge of onset; visual acuity; ellipsoid line length; nasal, temporal, and foveal retinal thickness; and pathogenic variants and related phenotypes, including Newfoundland rod-cone and Bothnia dystrophies (NFRCDs), were reappraised.ResultsTwenty-one patients (15 families) were included. The most frequent form was NFRCD with 12 patients (8 families) homozygous for the recurrent deletion of exons 7 through 9 in RLBP1 and 5 patients (4 families) with biallelic protein-truncating variants (2 novel: p.Gln16∗ and p.Tyr251∗). A novel combination of the p.Arg234Trp Bothnia variant with a nonsense variant in trans led to Bothnia dystrophy in 2 sisters. One proband carrying the p.Met266Lys Bothnia variant and in trans p.Arg121Trp and a second, with the p.Arg9Cys and p.Tyr111∗ combination, both demonstrated mild retinitis punctata albescens. Independently of genotype, all patients showed a visual acuity of worse than 20/200, an ellipsoid line width of less than 1000 μm, and a mean foveal thickness of less than 130 to 150 μm, with loss of both the interdigitation and ellipsoid lines.ConclusionsThe eligibility for RLBP1 gene therapy first should be determined according to the biallelic variant combination using a robust classification as proposed herein. An ellipsoid line width of more than 1200 μm and a central thickness of more than 130 to 150 μm with detectable ellipsoid and interdigitation lines should be 2 prerequisite imaging indicators for gene therapy.
Project description:Bardet-Biedl Syndrome (BBS) is an autosomal recessive systemic disorder characterized by retinitis pigmentosa, polydactyly, obesity, intellectual disability, renal impairments, and hypogonadism. The purpose of this study was to determine the ocular characteristics of a boy with BBS caused by a novel homozygous variant in the ARL6 (alternative named BBS3) gene who had been originally diagnosed with retinitis punctata albescens. This was an observational case study. The patient underwent ophthalmological examinations, electroretinography, and genetic analyses using whole-exome sequencing. A 7-year-old boy was examined in our hospital with complaints of a progressive reduction of his visual acuity and night blindness in both eyes. There was no family history of eye diseases and no consanguineous marriage. Fundus examinations showed numerous white spots in the deep retina and retinal pigment epithelium. Fundus autofluorescence showed hypofluorescence consistent with these spots. Both the scotopic and photopic components of the full-field electroretinographies were non-detectable. Based on these clinical findings, this boy was suspected to have retinitis punctata albescens. Subsequent genetic testing using whole-exome sequencing revealed a novel homozygous variants in the ARL6/BBS3 gene (NM_001278293.3:c.528G>A, (p.Trp176Ter)). A systemic examination by the pediatric department revealed that this boy had a history of a surgical excision of polydactyly on his left foot when he was born, and that he was mildly obese. There were no prominent intellectual or gonadal dysfunctions, no craniofacial or dental abnormalities, no congenital heart disease, and no hearing impairment. He was then clinically and genetically diagnosed with BBS. In children with night blindness and progressive visual dysfunction, it is important for ophthalmologists to consult clinical geneticists and pediatricians to rule out the possibility of systemic diseases such as BBS.
Project description:In the present study, we screened 529 Brazilian individuals affected by inherited retinal disorders. A total of seven unrelated and nonsyndromic patients with RP1 biallelic variants (OMIM # 180100) were diagnosed in our centre and included in the study. They had classic retinitis pigmentosa with diagnosis at the first decade of life. The visual acuities were severely affected at a young age. The fundus aspects were similar among all patients. An atrophic ring was present around the fovea in several cases. All patients had molecular diagnosis, with six different RP1 variants. This study reports two new pathogenic variants - two frameshift duplications (c.1234dupA p.Met412Asnfs*7 and c.1265dupC p.Ala423Cysfs*2) and reinforces other four known pathogenic variants - two frameshift deletions (c.469delG p.Val157Trpfs*16 and c.3843delT p.Pro1282Leufs*12) and two stop gain mutations (c.1186 C > T p.Arg396* and c.1625C > G p.Ser542*). These findings broaden the spectrum of RP1 variants. This study also reviewed the fundus characteristics that clinically could raise the hypothesis of a retinitis pigmentosa due to RP1 gene. It is worthwhile to try to identify the disease-causing variants in each patient since it can provide prognostic information and be useful in genetic consultation and diagnosis in the future.
Project description:Retinitis pigmentosa (RP) is a genetically heterogeneous retinal degeneration characterized by photoreceptor death, which results in visual failure. Here, we used a combination of homozygosity mapping and exome sequencing to identify mutations in ARL2BP, which encodes an effector protein of the small GTPases ARL2 and ARL3, as causative for autosomal-recessive RP (RP66). In a family affected by RP and situs inversus, a homozygous, splice-acceptor mutation, c.101-1G>C, which alters pre-mRNA splicing of ARLBP2 in blood RNA, was identified. In another family, a homozygous c.134T>G (p.Met45Arg) mutation was identified. In the mouse retina, ARL2BP localized to the basal body and cilium-associated centriole of photoreceptors and the periciliary extension of the inner segment. Depletion of ARL2BP caused cilia shortening. Moreover, depletion of ARL2, but not ARL3, caused displacement of ARL2BP from the basal body, suggesting that ARL2 is vital for recruiting or anchoring ARL2BP at the base of the cilium. This hypothesis is supported by the finding that the p.Met45Arg amino acid substitution reduced binding to ARL2 and caused the loss of ARL2BP localization at the basal body in ciliated nasal epithelial cells. These data demonstrate a role for ARL2BP and ARL2 in primary cilia function and that this role is essential for normal photoreceptor maintenance and function.
Project description:Cellular retinaldehyde-binding protein (CRALBP) chaperones 11-cis-retinal to convert opsin receptor molecules into photosensitive retinoid pigments of the eye. We report a thermal secondary isomerase activity of CRALBP when bound to 9-cis-retinal. UV/vis and (1)H NMR spectroscopy were used to characterize the product as 9,13-dicis-retinal. The X-ray structure of the CRALBP mutant R234W:9-cis-retinal complex at 1.9 Å resolution revealed a niche in the binding pocket for 9-cis-aldehyde different from that reported for 11-cis-retinal. Combined computational, kinetic, and structural data lead us to propose an isomerization mechanism catalyzed by a network of buried waters. Our findings highlight a specific role of water molecules in both CRALBP-assisted specificity toward 9-cis-retinal and its thermal isomerase activity yielding 9,13-dicis-retinal. Kinetic data from two point mutants of CRALBP support an essential role of Glu202 as the initial proton donor in this isomerization reaction.
Project description:Cellular retinaldehyde-binding protein (CRALBP) is essential for mammalian vision by routing 11-cis-retinoids for the conversion of photobleached opsin molecules into photosensitive visual pigments. The arginine-to-tryptophan missense mutation in position 234 (R234W) in the human gene RLBP1 encoding CRALBP compromises visual pigment regeneration and is associated with Bothnia dystrophy. Here we report the crystal structures of both wild-type human CRALBP and of its mutant R234W as binary complexes complemented with the endogenous ligand 11-cis-retinal, at 3.0 and 1.7 A resolution, respectively. Our structural model of wild-type CRALBP locates R234 to a positively charged cleft at a distance of 15 A from the hydrophobic core sequestering 11-cis-retinal. The R234W structural model reveals burial of W234 and loss of dianion-binding interactions within the cleft with physiological implications for membrane docking. The burial of W234 is accompanied by a cascade of side-chain flips that effect the intrusion of the side-chain of I238 into the ligand-binding cavity. As consequence of the intrusion, R234W displays 5-fold increased resistance to light-induced photoisomerization relative to wild-type CRALBP, indicating tighter binding to 11-cis-retinal. Overall, our results reveal an unanticipated domino-like structural transition causing Bothnia-type retinal dystrophy by the impaired release of 11-cis-retinal from R234W.
Project description:Retinitis pigmentosa (RP) refers to a genetically heterogeneous group of progressive neurodegenerative diseases that result in dysfunction and/or death of rod and cone photoreceptors in the retina. So far, 18 genes have been identified for autosomal-dominant (ad) RP. Here, we describe an adRP locus (RP42) at chromosome 7p15 through linkage analysis in a six-generation Scandinavian family and identify a disease-causing mutation, c.449G-->A (p.S150N), in exon 6 of the KLHL7 gene. Mutation screening of KLHL7 in 502 retinopathy probands has revealed three different missense mutations in six independent families. KLHL7 is widely expressed, including expression in rod photoreceptors, and encodes a 75 kDa protein of the BTB-Kelch subfamily within the BTB superfamily. BTB-Kelch proteins have been implicated in ubiquitination through Cullin E3 ligases. Notably, all three putative disease-causing KLHL7 mutations are within a conserved BACK domain; homology modeling suggests that mutant amino acid side chains can potentially fill the cleft between two helices, thereby affecting the ubiquitination complexes. Mutations in an identical region of another BTB-Kelch protein, gigaxonin, have previously been associated with giant axonal neuropathy. Our studies suggest an additional role of the ubiquitin-proteasome protein-degradation pathway in maintaining neuronal health and in disease.
Project description:The aim of this study was to investigate coenzyme Q10 (CoQ10) biosynthesis pathway defects in inherited retinal dystrophy. Individuals affected by inherited retinal dystrophy (IRD) underwent exome or genome sequencing for molecular diagnosis of their condition. Following negative IRD gene panel analysis, patients carrying biallelic variants in CoQ10 biosynthesis pathway genes were identified. Clinical data were collected from the medical records. Haplotypes harbouring the same missense variant were characterised from family genome sequencing (GS) data and direct Sanger sequencing. Candidate splice variants were characterised using Oxford Nanopore Technologies single molecule sequencing. The CoQ10 status of the human plasma was determined in some of the study patients. 13 individuals from 12 unrelated families harboured candidate pathogenic genotypes in the genes: PDSS1, COQ2, COQ4 and COQ5. The PDSS1 variant c.589 A > G was identified in three affected individuals from three unrelated families on a possible ancestral haplotype. Three variants (PDSS1 c.468-25 A > G, PDSS1 c.722-2 A > G, COQ5 c.682-7 T > G) were shown to lead to cryptic splicing. 6 affected individuals were diagnosed with non-syndromic retinitis pigmentosa and 7 had additional clinical findings. This study provides evidence of CoQ10 biosynthesis pathway gene defects leading to non-syndromic retinitis pigmentosa in some cases. Intronic variants outside of the canonical splice-sites represent an important cause of disease. RT-PCR nanopore sequencing is effective in characterising these splice defects.
Project description:PURPOSE:To localize and identify the gene and mutations causing autosomal dominant retinitis pigmentosa in a Chinese Family. METHODS:Families were ascertained and patients underwent complete ophthalmic examinations. Blood samples were collected and DNA was extracted. A linkage scan of genomic regions containing known candidate genes was performed by using 34 polymorphic microsatellite markers on genomic DNA from affected and unaffected family members, and lod scores were calculated. Candidate genes were sequenced and mutations analyzed. RESULTS:A genome-wide scan yielded a lod score of 3.5 at theta = 0 for D2S2333 and 3.46 at theta = 0 for D2S2216. This region harbors the ASCC3L1 gene. Sequencing of ASCC3L1 in an affected family member showed a heterozygous single-base-pair change; c.3269G-->T, predicted to result in an Arg1090Leu amino acid change. CONCLUSIONS:The results provide strong evidence that mutations in ASCC3L1 have resulted in autosomal dominant retinitis pigmentosa in this Chinese family.