Project description:Autosomal recessive polycystic kidney disease is a truly catastrophic monogenetic disease, causing death and end stage renal disease in neonates and children. Using PCK female rats, an orthologous model of autosomal recessive polycystic kidney disease harboring mutant Pkhd1, we tested the hypothesis that intravenous renal cell transplantation with normal Sprague Dawley male kidney cells would improve the polycystic kidney disease phenotype. Cytotherapy with renal cells expressing wild type Pkhd1 and tubulogenic serum amyloid A1 had powerful and sustained beneficial effects on renal function and structure in the polycystic kidney disease model. Donor cell engraftment and both mutant and wild type Pkhd1 were found in treated but not control PCK kidneys 15 weeks after the final cell infusion. To examine the mechanisms of global protection with a small number of transplanted cells, we tested the hypothesis that exosomes derived from normal Sprague Dawley cells can limit the cystic phenotype of PCK recipient cells. We found that renal exosomes originating from normal Sprague Dawley cells carried and transferred wild type Pkhd1 mRNA to PCK cells in vivo and in vitro and restricted cyst formation by cultured PCK cells. The results indicate that transplantation with renal cells containing wild type Pkhd1 improves renal structure and function in autosomal recessive polycystic kidney disease and may provide an intra-renal supply of normal Pkhd1 mRNA.
Project description:Mutations in the EYS (eyes shut homolog) gene are a common cause of autosomal recessive (ar) retinitis pigmentosa (RP). Without a mammalian model of human EYS disease, there is limited understanding of details of disease expression and rates of progression of the retinal degeneration. We studied clinically and with chromatic static perimetry, spectral-domain optical coherence tomography (OCT), and en face autofluoresence imaging, a cohort of 15 patients (ages 12-51 at first visit), some of whom had longitudinal data of function and structure. Rod sensitivity was able to be measured by chromatic perimetry in most patients at their earliest visits and some patients retained patchy rod function into the fifth decade of life. As expected from RP, cone sensitivity persisted after rod function was no longer measurable. The photoreceptor nuclear layer of the central retina was abnormal except at the fovea in most patients at first visit. Perifoveal disease measured over a period of years indicated that photoreceptor structural loss was followed by dysmorphology of the inner retina and loss of retinal pigment epithelial integrity. Although there could be variability in severity, preliminary analyses of the rates of vision loss suggested that EYS is a more rapidly progressive disease than other ciliopathies causing arRP, such as USH2A and MAK.
Project description:ObjectivesTo describe 3 children with mutations in a Meckel syndrome gene (MKS3), with features of autosomal recessive polycystic kidney disease (ARPKD), nephronophthisis, and Joubert syndrome (JS).Study designBiochemical evaluations, magnetic resonance and ultrasound imaging, electroretinograms, IQ testing, and sequence analysis of the PKHD1 and MKS3 genes were performed. Functional consequences of the MKS3 mutations were evaluated by cDNA sequencing and transfection studies with constructs of meckelin, the protein product of MKS3.ResultsThese 3 children with MKS3 mutations had features typical of ARPKD, that is, enlarged, diffusely microcystic kidneys and early-onset severe hypertension. They also exhibited early-onset chronic anemia, a feature of nephronophthisis, and speech and oculomotor apraxia, suggestive of JS. Magnetic resonance imaging of the brain, originally interpreted as normal, revealed midbrain and cerebellar abnormalities in the spectrum of the "molar tooth sign" that characterizes JS.ConclusionsThese findings expand the phenotypes associated with MKS3 mutations. MKS3-related ciliopathies should be considered in patients with an ARPKD-like phenotype, especially in the presence of speech and oculomotor apraxia. In such patients, careful expert evaluation of the brain images can be beneficial because the brain malformations can be subtle.
Project description:Nephronophthisis-related ciliopathies (NPHP-RCs) are developmental and degenerative kidney diseases that are frequently associated with extrarenal pathologies such as retinal degeneration, obesity, and intellectual disability. We recently identified mutations in a gene encoding the centrosomal protein SDCCAG8 as causing NPHP type 10 in humans. To study the role of Sdccag8 in disease pathogenesis, we generated a Sdccag8 gene-trap mouse line. Homozygous Sdccag8(gt/gt) mice lacked the wild-type Sdccag8 transcript and protein, and recapitulated the human phenotypes of NPHP and retinal degeneration. These mice exhibited early onset retinal degeneration that was associated with rhodopsin mislocalization in the photoreceptors and reduced cone cell numbers, and led to progressive loss of vision. By contrast, renal histologic changes occurred later, and no global ciliary defects were observed in the kidneys. Instead, renal pathology was associated with elevated levels of DNA damage response signaling activity. Cell culture studies confirmed the aberrant activation of DNA damage response in Sdccag8(gt/gt)-derived cells, characterized by elevated levels of γH2AX and phosphorylated ATM and cell cycle profile abnormalities. Our analysis of Sdccag8(gt/gt) mice indicates that the pleiotropic phenotypes in these mice may arise through multiple tissue-specific disease mechanisms.
Project description:Purpose: To report a case of autosomal recessive bestrophinopathy (ARB) that presented with macular hole retinal detachment (MHRD). Methods: A case report. Results: A 31-year-old male patient presented with rapid deterioration of vision in the left eye. On fundus examination, bilateral retinal deposits in both eyes, which were brightly hyperautofluorescent, and an MHRD in the left eye could be detected. An electrooculogram demonstrated absent light rise with abnormal Arden's ratio in both eyes. The patient was offered surgery for the MHRD but refused due to the guarded visual prognosis. Follow up of the patient after one year revealed progression of the retinal detachment. Genetic testing revealed a novel, homozygous missense mutation in the BEST1 gene, confirming the diagnosis of ARB. Conclusion: ARB can present with an MHRD. Counseling patients with inherited retinal dystrophies about the visual prognosis following surgical intervention is important.
Project description:PurposeThe Pakistan Punjab population has been a rich source for identifying genes causing or contributing to autosomal recessive retinal degenerations (arRD). This study was carried out to delineate the genetic architecture of arRD in the Pakistani population.MethodsThe genetic origin of arRD in a total of 144 families selected only for having consanguineous marriages and multiple members affected with arRD was examined. Of these, causative mutations had been identified in 62 families while only the locus had been identified for an additional 15. The remaining 67 families were subjected to homozygosity exclusion mapping by screening of closely flanking microsatellite markers at 180 known candidate genes/loci followed by sequencing of the candidate gene for pathogenic changes.ResultsOf these 67 families subjected to homozygosity mapping, 38 showed homozygosity for at least one of the 180 regions, and sequencing of the corresponding genes showed homozygous cosegregating mutations in 27 families. Overall, mutations were detected in approximately 61.8 % (89/144) of arRD families tested, with another 10.4% (15/144) being mapped to a locus but without a gene identified.ConclusionsThese results suggest the involvement of unmapped novel genes in the remaining 27.8% (40/144) of families. In addition, this study demonstrates that homozygosity mapping remains a powerful tool for identifying the genetic defect underlying genetically heterogeneous arRD disorders in consanguineous marriages for both research and clinical applications.
Project description:Inherited retinal diseases (IRDs) are heterogeneous phenotypes caused by variants in a large number of genes. Disease prevalence and the frequency of carriers in the general population have been estimated in only a few studies, but are largely unknown. To this end, we developed two parallel methods to calculate carrier frequency for mutations causing autosomal-recessive (AR) IRDs in the Israeli population. We created an SQL database containing information on 178 genes from gnomAD (including genotyping of 5706 Ashkenazi Jewish (AJ) individuals) and our cohort of >2000 families with IRDs. Carrier frequency for IRD variants and genes was calculated based on allele frequency values and the Hardy-Weinberg (HW) equation. We identified 399 IRD-causing variants in 111 genes in Israeli patients and AJ controls. For the AJ subpopulation, gnomAD and HW-based regression analysis showed high correlation, therefore allowing one to use HW-based data as a reliable estimate of carrier frequency. Overall, carrier frequency per subpopulation ranges from 1/2.2 to 1/9.6 individuals, with the highest value obtained for the Arab-Muslim subpopulation in Jerusalem reaching an extremely high carrier rate of 44.7%. Carrier frequency per gene ranges from 1/31 to 1/11994 individuals. We estimate the total carrier frequency for AR-IRD mutations in the Israeli population as over 30%, a relatively high carrier frequency with marked variability among subpopulations. Therefore, these data are highly important for more reliable genetic counseling and genetic screening. Our method can be adapted to study other populations, either based on allele frequency data or cohort of patients.
Project description:We studied a case with suspected PIK3CD deficiency with a homozygous mutation in the patient in PIK3CD (c.1340-1 G>A). All other family members were tested and defined as carriers of the same mutation and are clinically healthy. The literature states that there is an AD but also an AR form of the disease (Immunodeficiency 14 A and B, respectively) linked to the gene. The clinical phenotype of the patient fits very well the description as LOF she suffers from severe, recurrent infections since infancy and has low overall IgG levels.
Project description:Background/aimsCalcium homeostasis requires regulated cellular and interstitial systems interacting to modulate the activity and movement of this ion. Disruption of these systems in the kidney results in nephrocalcinosis and nephrolithiasis, important medical problems whose pathogenesis is incompletely understood.MethodsWe investigated 25 patients from 16 families with unexplained nephrocalcinosis and characteristic dental defects (amelogenesis imperfecta, gingival hyperplasia, impaired tooth eruption). To identify the causative gene, we performed genome-wide linkage analysis, exome capture, next-generation sequencing, and Sanger sequencing.ResultsAll patients had bi-allelic FAM20A mutations segregating with the disease; 20 different mutations were identified.ConclusionsThis autosomal recessive disorder, also known as enamel renal syndrome, of FAM20A causes nephrocalcinosis and amelogenesis imperfecta. We speculate that all individuals with biallelic FAM20A mutations will eventually show nephrocalcinosis.
Project description:ObjectiveTo provide a comprehensive overview of all detected mutations in the ABCA4 gene in Spanish families with autosomal recessive retinal disorders, including Stargardt's disease (arSTGD), cone-rod dystrophy (arCRD), and retinitis pigmentosa (arRP), and to assess genotype-phenotype correlation and disease progression in 10 years by considering the type of variants and age at onset.DesignCase series.ParticipantsA total of 420 unrelated Spanish families: 259 arSTGD, 86 arCRD, and 75 arRP.MethodsSpanish families were analyzed through a combination of ABCR400 genotyping microarray, denaturing high-performance liquid chromatography, and high-resolution melting scanning. Direct sequencing was used as a confirmation technique for the identified variants. Screening by multiple ligation probe analysis was used to detect possible large deletions or insertions in the ABCA4 gene. Selected families were analyzed further by next generation sequencing.Main outcome measuresDNA sequence variants, mutation detection rates, haplotypes, age at onset, central or peripheral vision loss, and night blindness.ResultsOverall, we detected 70.5% and 36.6% of all expected ABCA4 mutations in arSTGD and arCRD patient cohorts, respectively. In the fraction of the cohort where the ABCA4 gene was sequenced completely, the detection rates reached 73.6% for arSTGD and 66.7% for arCRD. However, the frequency of possibly pathogenic ABCA4 alleles in arRP families was only slightly higher than that in the general population. Moreover, in some families, mutations in other known arRP genes segregated with the disease phenotype.ConclusionsAn increasing understanding of causal ABCA4 alleles in arSTGD and arCRD facilitates disease diagnosis and prognosis and also is paramount in selecting patients for emerging clinical trials of therapeutic interventions. Because ABCA4-associated diseases are evolving retinal dystrophies, assessment of age at onset, accurate clinical diagnosis, and genetic testing are crucial. We suggest that ABCA4 mutations may be associated with a retinitis pigmentosa-like phenotype often as a consequence of severe (null) mutations, in cases of long-term, advanced disease, or both. Patients with classical arRP phenotypes, especially from the onset of the disease, should be screened first for mutations in known arRP genes and not ABCA4.