Project description:Oculopharyngodistal myopathy (OPDM) is an adult-onset neuromuscular disease characterized by progressive ocular, facial, pharyngeal and distal limb muscle involvement. Trinucleotide repeat expansions in LRP12 or GIPC1 were recently reported to be associated with OPDM. However, a significant portion of OPDM patients have unknown genetic causes. In this study, long-read whole-genome sequencing and repeat-primed PCR were performed and we identified GGC repeat expansions in the NOTCH2NLC gene in 16.7% (4/24) of a cohort of Chinese OPDM patients, designated as OPDM type 3 (OPDM3). Methylation analysis indicated that methylation levels of the NOTCH2NLC gene were unaltered in OPDM3 patients, but increased significantly in asymptomatic carriers. Quantitative real-time PCR analysis indicated that NOTCH2NLC mRNA levels were increased in muscle but not in blood of OPDM3 patients. Immunofluorescence on OPDM muscle samples and expressing mutant NOTCH2NLC with (GGC)69 repeat expansions in HEK293 cells indicated that mutant NOTCH2NLC-polyglycine protein might be a major component of intranuclear inclusions, and contribute to toxicity in cultured cells. In addition, two RNA-binding proteins, hnRNP A/B and MBNL1, were both co-localized with p62 in intranuclear inclusions in OPDM muscle samples. These results indicated that a toxic protein gain-of-function mechanism and RNA gain-of-function mechanism may both play a vital role in the pathogenic processes of OPDM3. This study extended the spectrum of NOTCH2NLC repeat expansion-related diseases to a predominant myopathy phenotype presenting as OPDM, and provided evidence for possible pathogenesis of these diseases.
Project description:GGC repeat expansion within NOTCH2NLC gene has been identified as the genetic cause of neuronal intranuclear inclusion disease (NIID). To understand the molecular pathogenesis of NIID, here we have established both a transgenic mouse model and a human neural progenitor cell (hNPC) model. We show that the expression of the NOTCH2NLC gene with expanded GGC repeats produces multiple forms of polypeptides, including polyglycine (polyG), polyalanine (polyA) and polyarginine (polyR), and leads to widespread intranuclear inclusions, severe neurodegeneration, motor dysfunction and cognitive deficits, which faithfully mimics the clinical manifestations and pathological features associated with NIID. We further performed RNA-seq on the prefrontal cortex, cerebellum and hippocampus of the transgenic mice and on the hNPC model and identified a large proportion of conserved alternative splicing between the NIID mouse and hNPC cell models. Analyses of the conserved alternative splicing revealed the enrichment of the binding motif of hnRNPM. We found that hnRNPM could interact with and be sequestered by expanded NOTCH2NLC-polyG and -polyA. Functional expression of hnRNPM could ameliorate the cellular toxicity caused by expanded GGC repeats within NOTCH2NLC. These results together suggest that dysregulated alternative splicing could play a vital role in the molecular pathogenesis of NIID.
Project description:There is still a considerable proportion of patients with inherited peripheral neuropathy (IPN) whose pathogenic genes are unknown. This study was intended to investigate whether the GGC repeat expansion in the NOTCH2NLC is presented in some patients with IPN. A total of 142 unrelated mainland Chinese patients with highly suspected diagnosis of IPN without any known causative gene were recruited. Repeat-primed polymerase chain reaction (RP-PCR) was performed to screen GGC repeat expansion in NOTCH2NLC, followed by fluorescence amplicon length analysis-PCR (AL-PCR) to determine the GGC repeat size. Detailed clinical data as well as nerve, muscle, and skin biopsy were reviewed and analyzed in the NOTCH2NLC-related IPN patients. In total, five of the 142 patients (3.52%) were found to have pathogenic GGC expansion in NOTCH2NLC, with repeat size ranging from 126 to 206 repeats. All the NOTCH2NLC-related IPN patients presented with adult-onset motor-sensory and autonomic neuropathy that predominantly affected the motor component of peripheral nerves. While tremor and irritating dry cough were noted in four-fifths of the patients, no other signs of the central nervous system were presented. Electrophysiological studies revealed both demyelinating and axonal changes of polyneuropathy that were more severe in lower limbs and asymmetrically in upper limbs. Sural nerve pathology was characterized by multiple fibers with thin myelination, indicating a predominant demyelinating process. Muscle pathology was consistent with neuropathic changes. P62-positive intranuclear inclusions were observed in nerve, skin, and muscle tissues. Our study has demonstrated that GGC expansion in NOTCH2NLC is associated with IPN presenting as predominant motor-sensory and autonomic neuropathy, which expands the phenotype of the NOTCH2NLC-related repeat expansion spectrum. Screening of GGC repeat expansions in the NOTCH2NLC should be considered in patients presenting with peripheral neuropathy with tremor and irritating dry cough.
Project description:BackgroundThe expansion of GGC repeat in the 5' untranslated region of the NOTCH2NLC has been associated with various neurogenerative disorders of the central nervous system and, more recently, oculopharyngodistal myopathy. This study aimed to report patients with distal weakness with both neuropathic and myopathic features on electrophysiology and pathology who present GGC repeat expansions in the NOTCH2NLC.MethodsWhole-exome sequencing (WES) and long-read sequencing were implemented to identify the candidate genes. In addition, the available clinical data and the pathological changes associated with peripheral nerve and muscle biopsies were reviewed and studied.ResultsWe identified and validated GGC repeat expansions of NOTCH2NLC in three unrelated patients who presented with progressive weakness predominantly affecting distal lower limb muscles, following negative results in an initial WES. We found intranuclear inclusions with multiple proteins deposits in the nuclei of both myofibers and Schwann cells. The clinical features of these patients are compatible with the diagnosis of distal motor neuropathy and rimmed vacuolar myopathy.InterpretationThese phenotypes enrich the class of features associated with NOTCH2NLC-related repeat expansion disorders (NRED), and provide further evidence that the neurological symptoms of NRED include not only brain, spinal cord, and peripheral nerves damage, but also myopathy, and that overlapping symptoms might exist.
Project description:Oculopharyngodistal myopathy (OPDM) is an adult-onset inherited neuromuscular disorder characterized by progressive ptosis, external ophthalmoplegia, and weakness of the masseter, facial, pharyngeal, and distal limb muscles. The myopathological features are presence of rimmed vacuoles (RVs) in the muscle fibers and myopathic changes of differing severity. Inheritance is variable, with either putative autosomal-dominant or autosomal-recessive pattern. Here, using a comprehensive strategy combining whole-genome sequencing (WGS), long-read whole-genome sequencing (LRS), linkage analysis, repeat-primed polymerase chain reaction (RP-PCR), and fluorescence amplicon length analysis polymerase chain reaction (AL-PCR), we identified an abnormal GGC repeat expansion in the 5' UTR of GIPC1 in one out of four families and three sporadic case subjects from a Chinese OPDM cohort. Expanded GGC repeats were further confirmed as the cause of OPDM in an additional 2 out of 4 families and 6 out of 13 sporadic Chinese individuals with OPDM, as well as 7 out of 194 unrelated Japanese individuals with OPDM. Methylation, qRT-PCR, and western blot analysis indicated that GIPC1 mRNA levels were increased while protein levels were unaltered in OPDM-affected individuals. RNA sequencing indicated p53 signaling, vascular smooth muscle contraction, ubiquitin-mediated proteolysis, and ribosome pathways were involved in the pathogenic mechanisms of OPDM-affected individuals with GGC repeat expansion in GIPC1. This study provides further evidence that OPDM is associated with GGC repeat expansions in distinct genes and highly suggests that expanded GGC repeat units are essential in the pathogenesis of OPDM, regardless of the genes in which the expanded repeats are located.
Project description:Neuronal intranuclear inclusion disease (NIID) is a slowly progressing neurodegenerative disease characterized by eosinophilic intranuclear inclusions in the nervous system and multiple visceral organs. The clinical manifestation of NIID varies widely, and both familial and sporadic cases have been reported. Here we have performed genetic linkage analysis and mapped the disease locus to 1p13.3-q23.1; however, whole-exome sequencing revealed no potential disease-causing mutations. We then performed long-read genome sequencing and identified a large GGC repeat expansion within human-specific NOTCH2NLC. Expanded GGC repeats as the cause of NIID was further confirmed in an additional three NIID-affected families as well as five sporadic NIID-affected case subjects. Moreover, given the clinical heterogeneity of NIID, we examined the size of the GGC repeat among 456 families with a variety of neurological conditions with the known pathogenic genes excluded. Surprisingly, GGC repeat expansion was observed in two Alzheimer disease (AD)-affected families and three parkinsonism-affected families, implicating that the GGC repeat expansions in NOTCH2NLC could also contribute to the pathogenesis of both AD and PD. Therefore, we suggest defining a term NIID-related disorders (NIIDRD), which will include NIID and other related neurodegenerative diseases caused by the expanded GGC repeat within human-specific NOTCH2NLC.
Project description:BackgroundNeuronal intranuclear inclusion disease (NIID) is a rare neurodegenerative disorder characterized by widespread intranuclear inclusions in the nervous system as well as multiple visceral organs. In 2019, expanded GGC repeats within the 5' untranslated region of the NOTCH2NLC gene was identified as the causative factor. NIID is a heterogeneous disorder with variable clinical manifestations including cognitive impairment, cerebellar ataxia, parkinsonism, paroxysmal symptoms, autonomic dysfunction, and muscle weakness. Although NIID primarily affects the central and peripheral nervous systems, growing evidence suggests potential cardiac abnormalities in NIID. However, the link between expanded GGC repeats within NOTCH2NLC and cardiac dysfunction remains uncertain.ResultsIn this study, we utilized two transgenic mouse models, expressing NOTCH2NLC-(GGC)98 ubiquitously or specifically in cardiomyocytes, and identified p62 (also known as sequestosome 1, SQSTM1)-positive intranuclear NOTCH2NLC-polyG inclusions in cardiomyocytes in two mouse models. We observed that both models exhibited cardiac-related pathological and echocardiographic changes, albeit exhibiting varying degrees of severity. Transcriptomic analysis revealed shared downregulation of genes related to ion channels and mitochondria in both models, with the cardiomyocyte-specific mice showing a more pronounced downregulation of mitochondria and energy metabolism-related pathways. Further investigations revealed decreased expression of mitochondria-related genes and electron transport chain activity. At last, we conducted a retrospective review of cardiac-related examination results from NIID patients at our hospital and also identified some cardiac abnormalities in NIID patients.ConclusionsOur study provided the first in vivo evidence linking GGC repeat expansions within NOTCH2NLC to cardiac abnormalities and highlighted the contribution of mitochondrial dysfunction in the development of cardiac abnormalities.
Project description:IntroductionEssential tremor (ET) is one of the most common movement disorders. Despite its high prevalence and heritability, its genetic etiology remains elusive with only a few susceptibility genes identified and poorly replicated. Our aim was to find novel candidate genes involved in ET predisposition through whole exome sequencing.MethodsWe studied eight multigenerational families (N = 40 individuals) with an autosomal-dominant inheritance using a comprehensive strategy combining whole exome sequencing followed by case-control association testing of prioritized variants in a separate cohort comprising 521 ET cases and 596 controls. We further performed gene-based burden analyses in an additional dataset comprising 789 ET patients and 770 healthy individuals to investigate whether there was an enrichment of rare deleterious variants within our candidate genes.ResultsFifteen variants co-segregated with disease status in at least one of the families, among which rs749875462 in CCDC183, rs535864157 in MMP10 and rs114285050 in GPR151 showed a nominal association with ET. However, we found no significant enrichment of rare variants within these genes in cases compared with controls. Interestingly, MMP10 protein is involved in the inflammatory response to neuronal damage and has been previously associated with other neurological disorders.ConclusionsWe prioritized a set of promising genes, especially MMP10, for further genetic and functional studies in ET. Our study suggests that rare deleterious coding variants that markedly increase susceptibility to ET are likely to be found in many genes. Future studies are needed to replicate and further infer biological mechanisms and potential disease causality for our identified genes.
Project description:ImportanceThe presence of Notch homolog 2 N-terminal-like C (NOTCH2NLC) repeat expansions are associated with neuronal intranuclear inclusion body disease (NIID), with varied neurological signs, including neuropathy, ataxia, parkinsonism, and tremor. To date, genetic screening of NOTCH2NLC GGC repeats in a cohort with typical Parkinson disease (PD) appears not to have been reported.ObjectiveTo investigate if NOTCH2NLC GGC expansions are present in a cohort of patients with PD and controls.Design, setting, and participantsThis case-control study was conducted in 2 tertiary movement disorder centers in Singapore. Participants were recruited and followed up from January 2005 to January 2020. The presence of NOTCH2NLC GGC expansion repeats was screened using polymerase chain reaction tests, and representative samples were verified with long-read genome sequencing.Main outcomes and measuresQualitative and quantitative comparisons between participants with sporadic PD, healthy control participants, and individuals with NIID.ResultsA total of 2076 participants, including 1000 with sporadic PD (600 men [60.0%]; mean age at onset, 62.6 [7.7] years) and 1076 healthy controls (581 men [54.0%]; mean age at study recruitment, 54.9 [9.4] years) were recruited. A total of 13 patients with PD and no healthy control participants were identified as carrying NOTCH2NLC GGC repeat expansions of more than 40 units; the frequency of more than 40 repeat expansions was higher in participants with PD than controls (P < .001). None of the patients with PD were carriers of known PD-associated genes. Ten patients with PD carried a GGC expansion of between 41 and 64 repeats (1% of patients with sporadic PD; mean [SD], 49.4 [9.2] repeats). The other 3 patients carried GGC repeats of 79 or more units, 2 with 122 and 79 repeats, respectively, exhibited typical parkinsonism and were responsive to small dosages of levodopa over many years, with no clinical or imaging features of NIID. The other patient with PD, who had 130 repeats, only developed cognitive impairment before death. Within the GGC expansions, there was no GGA interruptions (mean [SD] GGA percentage in the 3 patients with PD vs patients with NIID, 0% vs 12% [9%]), and the frequency of AGC interruptions was 3 times higher in these patients with PD than patients with NIID (mean [SD], 25% [12%] vs 8% [8%]).Conclusions and relevanceThis study demonstrated that individuals with sporadic PD who carried pathogenic NOTCH2NLC GGC repeat expansions can present with typical parkinsonism, requiring only low dosages of levodopa, without displaying other clinical or imaging features of NIID even after several years of follow-up. None of the patients with PD had GGA interruptions within their GGC expansions, and the frequency of AGC interruptions was much higher than that of patients with NIID. The functional significance of a higher moderate repeat expansion in patients with PD compared with healthy controls needs to be further investigated.