Project description:Purpose of reviewUromodulin (UMOD), also known as Tamm-Horsfall protein, is the most abundant protein in human urine. UMOD has multiple functions such as protection against urinary tract infections and nephrolithiasis. This review outlines recent progress made in UMOD's role in renal physiology, tubular transport, and mineral metabolism.Recent findingsUMOD is mostly secreted in the thick ascending limb (TAL) and to a lesser degree in the distal convoluted tubule (DCT). UMOD secretion is regulated by the calcium-sensing receptor. UMOD upregulates ion channels [e.g., renal outer medullary potassium channel, transient receptor potential cation channel subfamily V member 5, and transient receptor potential melastatin 6 (TRPM6)] and cotransporters [e.g., Na,K,2Cl cotransporter (NKCC2) and sodium-chloride cotransporter (NCC)] in the TAL and DCT. Higher serum UMOD concentrations have been associated with higher renal function and preserved renal reserve. Higher serum UMOD has also been linked to a lower risk of cardiovascular disease and diabetes mellitus.SummaryWith better serum UMOD detection assays the extent of different functions for UMOD is still expanding. Urinary UMOD regulates different tubular ion channels and cotransporters. Variations of urinary UMOD secretion can so contribute to common disorders such as hypertension or nephrolithiasis.
Project description:Uromodulin (UMOD) mutations are responsible for three autosomal dominant tubulo-interstitial nephropathies including medullary cystic kidney disease type 2 (MCKD2), familial juvenile hyperuricemic nephropathy and glomerulocystic kidney disease. Symptoms include renal salt wasting, hyperuricemia, gout, hypertension and end-stage renal disease. MCKD is part of the 'nephronophthisis-MCKD complex', a group of cystic kidney diseases. Both disorders have an indistinguishable histology and renal cysts are observed in either. For most genes mutated in cystic kidney disease, their proteins are expressed in the primary cilia/basal body complex. We identified seven novel UMOD mutations and were interested if UMOD protein was expressed in the primary renal cilia of human renal biopsies and if mutant UMOD would show a different expression pattern compared with that seen in control individuals. We demonstrate that UMOD is expressed in the primary cilia of renal tubules, using immunofluorescent studies in human kidney biopsy samples. The number of UMOD-positive primary cilia in UMOD patients is significantly decreased when compared with control samples. Additional immunofluorescence studies confirm ciliary expression of UMOD in cell culture. Ciliary expression of UMOD is also confirmed by electron microscopy. UMOD localization at the mitotic spindle poles and colocalization with other ciliary proteins such as nephrocystin-1 and kinesin family member 3A is demonstrated. Our data add UMOD to the group of proteins expressed in primary cilia, where mutations of the gene lead to cystic kidney disease.
Project description:BackgroundThis study investigates the link between genetic variants associated with kidney function and immunoglobulin A (IgA) nephropathy (IgAN) progression.MethodsWe recruited 961 biopsy-proven IgAN patients and 651 non-IgAN end-stage renal disease (ESRD) patients from Ruijin Hospital. Clinical and renal pathological data were collected. The primary outcome was the time to ESRD. A healthy population was defined as estimated glomerular filtration rate >60 mL/min/1.73 m2 without albuminuria or hematuria. Fifteen single-nucleotide polymorphisms (SNPs) were selected from a genome-wide association study of kidney function and genotyped by the SNaPshot. Immunohistochemistry in renal tissue and ELISA in urine samples were performed to explore the potential functions of genetic variations.ResultsThe rs77924615-G was independently associated with an increased risk for ESRD in IgAN patients after adjustments for clinical and pathologic indices, and treatment (adjusted hazard ratio 2.10; 95% confidence interval 1.14-3.88). No significant differences in ESRD-free survival time were found among different genotypes in non-IgAN ESRD patients (log-rank, P = .480). Moreover, rs77924615 exhibited allele-specific enhancer activity by dual-luciferase reporter assay. Accordingly, the urinary uromodulin-creatinine ratio (uUCR) was significantly higher in healthy individuals with rs77924615 AG or GG than in individuals with AA. Furthermore, uromodulin expression in tubular epithelial cells was higher in patients with rs77924615 AG or GG. Finally, we confirmed that an increased uUCR (P = .009) was associated with faster IgAN progression.ConclusionThe SNP rs77924615, which modulates the enhancer activity of the UMOD gene, is associated with renal function deterioration in IgAN patients by increasing uromodulin levels in both the renal tubular epithelium and urine.
Project description:The exclusive expression of uromodulin in the kidneys has made it an intriguing protein in kidney and cardiovascular research. Genome-wide association studies discovered variants of uromodulin that are associated with chronic kidney diseases and hypertension. Urinary and circulating uromodulin levels reflect kidney and cardiovascular health as well as overall mortality. More recently, Mendelian randomization studies have shown that genetically driven levels of uromodulin have a causal and adverse effect on kidney function. On a mechanistic level, salt sensitivity is an important factor in the pathophysiology of hypertension, and uromodulin is involved in salt reabsorption via the NKCC2 (Na+-K+-2Cl− cotransporter) on epithelial cells of the ascending limb of loop of Henle. In this review, we provide an overview of the multifaceted physiology and pathophysiology of uromodulin including recent advances in its genetics; cellular trafficking; and mechanistic and clinical studies undertaken to understand the complex relationship between uromodulin, blood pressure, and kidney function. We focus on tubular sodium reabsorption as one of the best understood and pathophysiologically and clinically most important roles of uromodulin, which can lead to therapeutic interventions.
Project description:Uromodulin, also known as the Tamm-Horsfall protein or THP, is the most abundant protein excreted in human urine. It is associated with the progression of kidney diseases; therefore, changes in the glycosylation profile of this protein could serve as a potential biomarker for kidney health. The typical glycomics analysis approaches used to quantify uromodulin glycosylation involve time-consuming and tedious glycoprotein isolation and labeling steps, which limit their utility in clinical glycomics assays, where sample throughput is important. Herein, we introduce a radically simplified sample preparation workflow, with direct ESI-MS analysis, enabling the quantification of N-linked glycans that originate from uromodulin. The method omits any glycan labeling steps but includes steps to reduce the salt content of the samples, thereby minimizing ion suppression. The method is effective for quantifying subtle glycosylation differences of uromodulin samples derived from different biological states. As a proof of concept, glycosylation from samples that differ by pregnancy status were shown to be differentiable.
Project description:BackgroundUromodulin kidney disease (UKD) is an inherited kidney disease caused by a uromodulin (UMOD) gene mutation. The UMOD gene encodes the Tamm-Horsfall protein (THP), which is the most abundant protein in healthy human urine. Because of its rarity, the incidence of UKD has not been fully elucidated. The purpose of the present study is to clarify the frequency of UKD among patients who underwent renal biopsy.MethodsImmunostaining for THP was performed for patients <50 years of age with renal insufficiency and hyperuricemia without overt urinalysis abnormality from renal biopsy databases. Serum and urinary THP concentrations were evaluated in available individuals.ResultsFifteen patients were selected for immunostaining from a total of 3787 patients. In three independent patients, abnormal THP accumulation in renal tubular cells was observed. A novel missense A247P UMOD mutation was detected in two of the three patients, including one having a typical family history of familial juvenile hyperuricemic nephropathy. Serum and urinary THP concentrations of all available patients with UMOD A247P mutation were significantly lower than those of controls.ConclusionsIn the present study, UKD was detected in <1 in 1000 subjects who underwent renal biopsies. However, in subjects meeting all of the above criteria, abnormal THP accumulation was detected in 20% (3/15), suggesting that renal biopsy with immunostaining for THP is a good tool for diagnosing UKD. Also, low serum THP concentration detected in the present subjects might be a good diagnostic marker or important in understanding the pathogenesis of UKD.
Project description:Advances in mass spectrometry (MS) have encouraged interest in its deployment in urine biomarker studies, but success has been limited. Urine exosomes have been proposed as an ideal source of biomarkers for renal disease. However, the abundant urinary protein, uromodulin, cofractionates with exosomes during isolation and represents a practical contaminant that limits MS sensitivity. Uromodulin depletion has been attempted but is labor- and time-intensive and may remove important protein biomarkers. We describe the application of an exclusion list (ExL) of uromodulin-related peptide ions, coupled with high-sensitivity mass spectrometric analysis, to increase the depth of coverage of the urinary exosomal proteome. Urine exosomal protein samples from healthy volunteers were subjected to tandem MS and abundant uromodulin peptides identified. Samples were run for a second time, while excluding these uromodulin peptides from fragmentation to allow identification of peptides from lower-abundance proteins. Uromodulin exclusion was performed in addition to dynamic exclusion. Results from these two procedures revealed 222 distinct proteins from conventional analysis, compared with 254 proteins after uromodulin exclusion, of which 188 were common to both methods. By unmasking a previously unidentified protein set, adding the ExL increased overall protein identifications by 29.7% to a total of 288 proteins. A fixed ExL, used in combination with conventional methods, effectively increases the depth of urinary exosomal proteins identified by MS, reducing the need for uromodulin depletion.
Project description:Uromodulin (UMOD) is synthesized in the thick ascending limb and secreted into urine as the most abundant protein. Association studies in humans suggest protective effects of UMOD against calcium-containing kidney stones. Mice carrying mutations of Umod found in human UMOD-associated kidney disease (UAKD) and Umod-deficient mice exhibit hypercalciuria. The mechanism for UMOD regulation of urinary Ca(2+) excretion is incompletely understood. We examined if UMOD regulates TRPV5 and TRPV6, channels critical for renal transcellular Ca(2+) reabsorption. Coexpression with UMOD increased whole-cell TRPV5 current density in HEK293 cells. In biotinylation studies, UMOD increased TRPV5 cell-surface abundance. Extracellular application of purified UMOD upregulated TRPV5 current density within physiological relevant concentration ranges. UMOD exerted a similar effect on TRPV6. TRPV5 undergoes constitutive caveolin-mediated endocytosis. UMOD had no effect on TRPV5 in a caveolin-1-deficient cell line. Expression of recombinant caveolin-1 in these cells restored the ability of UMOD to upregulate TRPV5. Secretion of UAKD-mutant UMOD was markedly reduced and coexpression of mutant UMOD with TRPV5 failed to increase its current. Immunofluorescent studies demonstrated lower TRPV5 expression in Umod(-/-) mice compared with wild-type. UMOD upregulates TRPV5 by acting from extracellular and by decreasing endocytosis of TRPV5. The stimulation of Ca(2+) reabsorption via TRPV5 by UMOD may contribute to protection against kidney-stone formation.
Project description:Vesicoureteral reflux (VUR) is associated with urinary tract infections (UTI) and renal scars. The kidney damage is correlated with the grade of reflux and the number of UTI, but other factors may also play a role. Uromodulin (UMOD) is a protein produced by kidney tubular cells, forming a matrix in the lumen. We evaluated whether the common variant rs4293393 in the UMOD gene was associated with febrile UTI (FUTI) and/or scars in a group of children with VUR. A total of 31 patients with primary VUR were enrolled. Renal scars were detected in 16 children; no scar was detected in 15 children. Genotype rs4293393 TC (TC) was present in 8 patients, 7 (88%) had scars; genotype rs4293393 TT (TT) was found in 23 patients, and 9 (39%) had scars. Among children with scars, those with TC compared with those with TT were younger (mean age 77 vs. 101 months), their reflux grade was comparable (3.7 vs. 3.9), and the number of FUTI was lower (2.9 vs. 3.7 per patient). Children with VUR carrying UMOD genotype rs4293393 TC seem more prone to developing renal scars, independent of FUTI.