Unknown

Dataset Information

0

An outcome model approach to transporting a randomized controlled trial results to a target population.


ABSTRACT:

Objective

Participants enrolled into randomized controlled trials (RCTs) often do not reflect real-world populations. Previous research in how best to transport RCT results to target populations has focused on weighting RCT data to look like the target data. Simulation work, however, has suggested that an outcome model approach may be preferable. Here, we describe such an approach using source data from the 2?×?2 factorial NAVIGATOR (Nateglinide And Valsartan in Impaired Glucose Tolerance Outcomes Research) trial, which evaluated the impact of valsartan and nateglinide on cardiovascular outcomes and new-onset diabetes in a prediabetic population.

Materials and methods

Our target data consisted of people with prediabetes serviced at the Duke University Health System. We used random survival forests to develop separate outcome models for each of the 4 treatments, estimating the 5-year risk difference for progression to diabetes, and estimated the treatment effect in our local patient populations, as well as subpopulations, and compared the results with the traditional weighting approach.

Results

Our models suggested that the treatment effect for valsartan in our patient population was the same as in the trial, whereas for nateglinide treatment effect was stronger than observed in the original trial. Our effect estimates were more efficient than the weighting approach and we effectively estimated subgroup differences.

Conclusions

The described method represents a straightforward approach to efficiently transporting an RCT result to any target population.

SUBMITTER: Goldstein BA 

PROVIDER: S-EPMC7792754 | biostudies-literature | 2019 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

An outcome model approach to transporting a randomized controlled trial results to a target population.

Goldstein Benjamin A BA   Phelan Matthew M   Pagidipati Neha J NJ   Holman Rury R RR   Pencina Michael J MJ   Stuart Elizabeth A EA  

Journal of the American Medical Informatics Association : JAMIA 20190501 5


<h4>Objective</h4>Participants enrolled into randomized controlled trials (RCTs) often do not reflect real-world populations. Previous research in how best to transport RCT results to target populations has focused on weighting RCT data to look like the target data. Simulation work, however, has suggested that an outcome model approach may be preferable. Here, we describe such an approach using source data from the 2 × 2 factorial NAVIGATOR (Nateglinide And Valsartan in Impaired Glucose Toleranc  ...[more]

Similar Datasets

2018-03-01 | GSE97248 | GEO
| S-EPMC7744390 | biostudies-literature
2024-06-13 | PXD046061 | Pride
2021-10-04 | GSE141478 | GEO
| S-EPMC5033082 | biostudies-literature
| S-EPMC10052556 | biostudies-literature
2023-09-01 | GSE226353 | GEO
| S-EPMC8715355 | biostudies-literature
2024-04-24 | GSE241134 | GEO
2024-06-13 | GSE240861 | GEO